Petroleum Chemistry

, Volume 54, Issue 8, pp 617–621 | Cite as

Effect of absorbent vapor on stability of characteristics of a composite PTMSP membrane on nonwoven polyester support during regeneration of diethanolamine solution in membrane contactor

  • S. D. BazhenovEmail author
  • G. A. Dibrov
  • E. G. Novitsky
  • V. P. Vasilevsky
  • V. V. Volkov


The regeneration of a carbon dioxide-loaded aqueous solution of diethanolamine (DEA) in a membrane contactor-stripper at a temperature of 100°C, an absorbent pressure of 10 atm, and a varying absorbent feed flow rate has been studied. The membranes used were laboratory samples of composite membranes prepared by deposition of thin separation layers of poly[1-(trimethylsilyl)-1-propyne] (PTMSP) on a porous support. The support was MFFK-1 microfiltration membrane (Vladipor) with the filtering porous layer of fluoroplastic F-42 (tetrafluoroethylene-vinylidene fluoride copolymer) deposited on a nonwoven polyethylene terephthalate (PET) support. After the first 10 days of testing, the CO2 flux at the membrane contactor outlet was reduced by a factor of 3 and then stabilized at 2 m3/(m2 h) within the next 80 days. It has been found that along with CO2 transport through the membrane, the vapor of the absorbent solution components is transferred. The concentration of DEA in the condensate was 0.5 wt %, that corresponds to the composition of equilibrium vapor over a 30 wt % DEA aqueous solution at 100°C. Since PTMSP is chemically resistant to the DEA solution at the regeneration temperature, the deterioration of the transport properties of the PTMSP/MFFK(PET) composite membrane with time during the absorbent regeneration is associated with the chemical degradation of the nonwoven PET support by the action of penetrating DEA vapor at a temperature of 100°C. It has been concluded that more chemically and thermally resistant porous supports such as ceramic microfiltration membranes should be used.


composite membranes membrane contactor-stripper diethanolamine regeneration carbon dioxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Qi and E. L. Cussler, J. Membr. Sci. 23, 321 (1985).CrossRefGoogle Scholar
  2. 2.
    Z. Qi and E. L. Cussler, J. Membr. Sci. 23, 333 (1985).CrossRefGoogle Scholar
  3. 3.
    S. Karoor and K. K. Sirkar, Ind. Eng. Chem. Res. 32, 674 (1983).CrossRefGoogle Scholar
  4. 4.
    P. H. M. Feron and A. E. Jansen, Energy Conv. Manage. 36, 411 (1995).CrossRefGoogle Scholar
  5. 5.
    D. deMontigny, P. Tontiwachwuthikul and A. Chakma, Ind. Eng. Chem. Res. 44, 5726 (2005).CrossRefGoogle Scholar
  6. 6.
    A. Mansourizadeh and A. F. Ismail, J. Hazard. Mater. 171, 38 (2009).CrossRefGoogle Scholar
  7. 7.
    J. L. Li and B. H. Chen, Sep. Purif. Technol. 41, 109 (2005).CrossRefGoogle Scholar
  8. 8.
    S. Koonaphapdeelert, Z. Wu, and K. Li, Chem. Eng. Sci. 64, 1 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Trusov, S. Legkov, L. J. P. Broeke, et al., J. Membr. Sci. 383, 241 (2011).CrossRefGoogle Scholar
  10. 10.
    A. Volkov, V. Vasilevsky, A. Runstraat, et al., Procedia Eng. 44, 332 (2012).CrossRefGoogle Scholar
  11. 11.
    E. Chabanon, B. Belaissaoui, and E. Favre, J. Membr. Sci. 459, 52 (2014).CrossRefGoogle Scholar
  12. 12.
    V. S. Khotimsky, M. V. Tchirkova, E. G. Litvinova, et al., J. Polym. Sci.: Part A: Polym. Chem. 41, 2133 (2003)CrossRefGoogle Scholar
  13. 13.
    N. R. Horn and D. R. Paul, Polymer 52, 5587 (2011).CrossRefGoogle Scholar
  14. 14.
    N. R. Horn and D. R. Paul, Macromol 45, 2820 (2012).CrossRefGoogle Scholar
  15. 15.
    L. S. Kocherlakota, Jr. D. B. Knorr, L. Foster, and R. M. Overney, Polymer 53, 2394 (2012).CrossRefGoogle Scholar
  16. 16.
    G. A. Dibrov, E. G. Novitskii, V. P. Vasilevskii, and V. V. Volkov, Pet. Chem. 54, 92 (2014).Google Scholar
  17. 17.
    Ashworth, M.R.F., Titrimetric Organic Analysis (Wiley, New York, 1961).Google Scholar
  18. 18.
    Handbook of Physical Quantities, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  19. 19.
    Encyclopedia of Polymers (Sovetskaya Entsiklopediya, Moscow, 1972), Vol. 3 [in Russian].Google Scholar
  20. 20.
    P. Moser, S. Schmidt, and K. Stahl, Energy Procedia 4, 473 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. D. Bazhenov
    • 1
    Email author
  • G. A. Dibrov
    • 1
  • E. G. Novitsky
    • 1
  • V. P. Vasilevsky
    • 1
  • V. V. Volkov
    • 1
    • 2
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations