Advertisement

Petroleum Chemistry

, Volume 53, Issue 7, pp 439–443 | Cite as

Experimental study of the effect of high pressure on the efficiency of whey nanofiltration process using an OPMN-P membrane

  • V. G. Myronchuk
  • I. O. Grushevskaya
  • D. D. Kucheruk
  • Yu. G. Zmievskii
Article

Abstract

The results of experimental investigation of the separation of milk whey with the use of OPMN-P nanofiltration membranes (Vladipor, Russia) at pressures of 1.6–6 MPa are presented. A dead-end membrane cell has been used for the experiments. Both the whole whey (without pretreatment) and the whey after microfiltration alone or micro- and ultrafiltration have been subjected to separation. It has been shown that the working pressure range of OPMN-P membranes can be extended from 1.6 to 5 MPa. The highest specific productivity and selectivity for lactose have been observed during the separation of whey ultrafiltration permeates. The presence of residual fats and proteins in the whey reduces the specific productivity. On the basis of calculation of the specific energy consumption, it has been concluded that a high pressure (5 MPa) is useful only for separation of whey ultrafiltration permeates.

Keywords

nanofiltration whey selectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. T. Bryk, Membrane Encyclopedia (Kievo-Mogilyanskaya Akademiya, Kiev, 2006), vol. 1 [in Ukrainian].Google Scholar
  2. 2.
    V. P. Dubyaga and I. B. Besfamil’nyi, Krit. Tekhnol. Membr., No. 3, 11 (2005).Google Scholar
  3. 3.
    B. Cuartas-Uribe, M. C. Vincent-Vela, S. Alvarez-Blanco, et al., J. Food Eng. 99, 373 (2010).CrossRefGoogle Scholar
  4. 4.
    B. Cuartas-Uribe, M. I. Alcaina-Miranda, E. Soriano-Costa, and A. Bes-Pia, Desalination 199, 43 (2006).CrossRefGoogle Scholar
  5. 5.
    E. Suarez, A. Lobo, S. Alvarez, et al., Desalination 241, 272 (2009).CrossRefGoogle Scholar
  6. 6.
    A. Roman, J. Wang, J. Csanadi, et al., Desalination 241, 288 (2009).CrossRefGoogle Scholar
  7. 7.
    B. Cuartas-Uribe, M. I. Alcaina-Miranda, E. Soriano-Costa, and A. Bes-Pia, J. Dairy Sci. 90, 1094 (2007).CrossRefGoogle Scholar
  8. 8.
    C. M. Urista, C. Diaz-Nava, B. Garcia-Gaitan, and R. E. Zavala-Arce, Afinidad: Rev. Quim. Teor. Aplic. 67, 212 (2010).Google Scholar
  9. 9.
    M. Nguyen, N. Reynolds, and S. Vigneswaran, J. Cleaner Prod. 11, 803 (2003).CrossRefGoogle Scholar
  10. 10.
    A. Roman, J. Wang, J. Csanadi, et al., Food Bioprocess. Technol. 4, 702 (2011).CrossRefGoogle Scholar
  11. 11.
    R. Atra, G. Vatai, E. Bekassy-Molnar, and A. Balint, J. Food Eng. 67, 325 (2005).CrossRefGoogle Scholar
  12. 12.
    Membranes, Filter Elements, and Membrane Technologies Catalogue (ZAO NTTs Vladipor, Vladimir, 2005) [in Russian].Google Scholar
  13. 13.
    G. S. Inikhov and N. P. Brio, Handbook of Milk and Dairy Product Analysis Methods (Pishchevaya Promyshlennost’, Moscow, 1971) [in Russian].Google Scholar
  14. 14.
    A. G. Khramtsov, Milk Sugar (Pishchevaya Promyshlennost’, Moscow, 1972) [in Russian].Google Scholar
  15. 15.
    G. N. Krus’, V. G. Tinyakov, and Yu. F. Fofanov, Milk Processing Technology and Dairy Equipment Engineering (Agropromizdat, Moscow, 1986) [in Russian].Google Scholar
  16. 16.
    Yu. I. Dytnerskii, Reverse Osmosis and Ultrafiltration (Khimiya, Moscow, 1978) [in Russian].Google Scholar
  17. 17.
    A. A. Fedotov, Candidate’s Dissertation in Technical Sciences (Voronezh, 2001).Google Scholar
  18. 18.
    C. Tanford, Physical Chemistry of Macromolecules (Wiley, New York, 1961).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. G. Myronchuk
    • 1
  • I. O. Grushevskaya
    • 1
  • D. D. Kucheruk
    • 2
  • Yu. G. Zmievskii
    • 1
  1. 1.National University of Food TechnologiesKievUkraine
  2. 2.Dumanskii Institute of Colloid and Water ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations