Petroleum Chemistry

, Volume 50, Issue 4, pp 271–282

Membrane gas separation progresses for process intensification strategy in the petrochemical industry

  • P. Bernardo
  • E. Drioli
Article
  • 726 Downloads

Abstract

The focus of this paper is on the progresses in membrane gas separation technology applied in the oil refining and petrochemical sector. Industrial applications, research trends on new materials and technical solutions, challenges and possible applications will be discussed. Other membrane operations will be briefly addressed, owing to their increasing number of installed systems in the refinery/petrochemical industry. This paper outlines how implementation of membrane technology in refineries and in the petrochemical industry result in Process Intensification (e.g., reduced footprint, better material utilization, reduced energy, reduced utilities and waste).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Koros, J. Membr. Sci. 300, 1 (2007).CrossRefGoogle Scholar
  2. 2.
    S. Muraleedaaran, X. Li, L. Li, and R. Lee, “Is Reverse Osmosis Effective for Produced Water Purification? Viability and Economic Analysis”, in SPE Western Regional Meeting, San Jose, California (USA), 2009.Google Scholar
  3. 3.
    O. Lefebvre and R. Moletta, Water Res. 40, 3671 (2006).CrossRefGoogle Scholar
  4. 4.
    L. Lin, Y. Zhang, and Y. Cong, Fuel 88/10, 1799 (2009).CrossRefGoogle Scholar
  5. 5.
    L. S. White, J. Membr. Sci. 286, 26 (2006).CrossRefGoogle Scholar
  6. 6.
    P. Vandezande, L. E. M. Gevers, and I. F. J. Vankelecom, Chem. Soc. Rev. 37, 365 (2008).CrossRefGoogle Scholar
  7. 7.
    S.-H. Yeon, K.-S. Lee, B. Sea, Y.-I. Park, and K.-H. Lee, J. Membr. Sci. 257, 156 (2005).CrossRefGoogle Scholar
  8. 8.
    V. M. Gryaznov and N. V. Orekhova, in Structured Catalysts and Reactors, Ed. by A. Cybulski and J. A. Moulijin (Marcel Dekker Inc., New York, 1998), pp. 435–461.Google Scholar
  9. 9.
    Y. Shirasaki, T. Tsuneki, Y. Ota, I. Yasuda, S. Tachibana, H. Nakajima, and K. Kobayashi, Int. J. Hydrogen En. 34, 4482 (2009).CrossRefGoogle Scholar
  10. 10.
    P. Bernardo, G. Barbieri, and E. Drioli, Chem. Eng. Sci. 65, 1159 (2010).CrossRefGoogle Scholar
  11. 11.
    P. Bernardo, A. Criscuoli, G. Clarizia, G. Barbieri, E. Drioli, G. Fleres, and M. Picciotti, Clean Tech. Environ. Policy 6/2, 78 (2004).CrossRefGoogle Scholar
  12. 12.
    P. Bernardo, E. Drioli, and G. Golemme, Ind. Eng. Chem. Res. 48/10, 4638 (2009).CrossRefGoogle Scholar
  13. 13.
    www.airproducts.no.Google Scholar
  14. 14.
    R.W. Baker, Membrane Technology and Applications (J. Wiley, England, 2004), Chapter 8.CrossRefGoogle Scholar
  15. 15.
    Project INCO Copernicus, “Gasification of Low Quality Coals in Fluidized Bed: a Novel Process of Controlled Injection of Oxygen Enriched Air Obtained by Means of Gas Separating Membranes” (MEGA), 1998–2001.Google Scholar
  16. 16.
    A. A. Belyaev, Yu. P. Yampolskii, L. E. Starannikova, A. M. Polyakov, G. Clarizia, E. Drioli, G. Marigliano, and G. Barbieri, Fuel Processing Technol. 80(2), 119 (2003).CrossRefGoogle Scholar
  17. 17.
    S. L. Matson, W. J. Ward, S. G. Kimure, and W. R. Browall, J. Membr. Sci. 29, 79 (1986).CrossRefGoogle Scholar
  18. 18.
    B. D. Bhide and S. A. Stern, J. Membr. Sci. 62, 13 (1991).CrossRefGoogle Scholar
  19. 19.
    P. S. Puri, “Membranes for Gas Separation: Current Status”, in Ecological Applications of Innovative Membrane Technology in the Chemical Industry, Cetraro (Italy), 1996.Google Scholar
  20. 20.
    L. Pillier, S. de Persis, G. Cabot, R. Bounaceur, Y. Liu, M. Boukhalfa, J. M. Most, I. Gokalp, and E. Favre, “Coupling of Oxygen-Enriched Combustion and CO2 Capture by Membrane Processes”, in Fourth European Combustion Meeting (ECM), Vienna (Austria), 2009.Google Scholar
  21. 21.
    “Air Liquide to Install ASU for Dongbei Special Steel Group”, China Chemical Reporter, 2007.Google Scholar
  22. 22.
    S. Liu and G. Gavalas, J. Membr. Sci. 246, 103 (2005).CrossRefGoogle Scholar
  23. 23.
    X. Tan, Z. Pang, and K. Li, J. Membr. Sci. 310, 550 (2008).CrossRefGoogle Scholar
  24. 24.
    P. A. Armstrong, D. L. Bennett, E. P. Foster, and E. E. Stein, “ITM Oxygen: The New Oxygen Supply for the New IGCC Market”, in Gasification Technologies 2005, San Francisco, California (U.S.A.), 2005.Google Scholar
  25. 25.
    R. W. Baker, Ind. Eng. Chem. Res. 41, 1393 (2002).CrossRefGoogle Scholar
  26. 26.
    R. Spillman, Chem. Eng. Prog. 41 (1989).Google Scholar
  27. 27.
    R. A. Hayes, (Du Pont), US Patent No. 4 880 442 (1989).Google Scholar
  28. 28.
    Y. Kusuki, T. Yoshinaga, and H. Shimazaki, (Ube), US Patent No. 5 141 642 (1992).Google Scholar
  29. 29.
    S. Thomas, I. Pinnau, N. Du, and M. D. Guiver, J. Membr. Sci. 338, 1 (2009).CrossRefGoogle Scholar
  30. 30.
    R. W. Baker and K. Lokhandwala, Ind. Eng. Chem. Res. 47, 2109 (2008).Google Scholar
  31. 31.
    www.natcogroup.com.Google Scholar
  32. 32.
    D. Dortmundt and K. Doshi, “Recent Developments in CO2 Removal Membrane Technology”, UOP LLC, Des Plaines, Illinois, 1999.Google Scholar
  33. 33.
    K. Matsumoto and P. Xu, J. Appl. Polym. Sci. 47, 1961 (1993).CrossRefGoogle Scholar
  34. 34.
    J. D. Wind, C. Staudt-Bickel, D. R. Paul, and W. J. Koros, Ind. Eng. Chem. Res. 41, 6139 (2002).CrossRefGoogle Scholar
  35. 35.
    C. Staudt-Bickel and W. J. Koros, J. Membr. Sci. 155, 145 (1999).CrossRefGoogle Scholar
  36. 36.
    www.ube.com.Google Scholar
  37. 37.
    www.medal.airliquide.com.Google Scholar
  38. 38.
    www.mtrinc.com.Google Scholar
  39. 39.
    K. A. Lokhandwala, I. Pinnau, Z. He, K. D. Amo, A. R. DaCosta, J. G. Wijmans, and R. W. Baker, J. Membr. Sci. 346, 270 (2010).CrossRefGoogle Scholar
  40. 40.
    T. Merkel, H. Lin, S. Thompson, R. Daniels, A. Serbanescu, and R. W. Baker, “A Membrane Process to Capture CO2 from Power Plant Flue Gas”, in International Conference on Membranes and Membrane Processes (ICOM2008), Honolulu (HI, USA), 2008, p. 275.Google Scholar
  41. 41.
    EU FP7 project DoubleNanoMem—“Nanocomposite and Nanostructured Polymeric Membranes for Gas and Vapour Separations”—NMP3-SL-2009-228631, http://www.itm.cnr.it/data/DoubleNanoMem.
  42. 42.
    H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. V. Wagner, and B. D. Freeman, D.J. Science 318/5848, 254 (2007).Google Scholar
  43. 43.
    www.sciencedaily.com/releases/2007/10/071011142625.htm.Google Scholar
  44. 44.
    J. C. Jansen, M. G. Buonomenna, A. Figoli, and E. Drioli, J. Membr. Sci. 272, 188 (2006).CrossRefGoogle Scholar
  45. 45.
    J. C. Jansen, M. Macchione, and E. Drioli, J. Membr. Sci. 255, 167 (2005).CrossRefGoogle Scholar
  46. 46.
    T. C. Merkel, I. Pinnau, R. Prabhakar, and B. D. Freeman, “Gas and vapor Transport Properties of Perfluoropolymers”, in Materials Science of Membranes for Gas and Vapor separation, Ed. by Yu. Yampolskii, I. Pinnau, and B. D. Freeman (Wiley: Chichester (UK), 2006), pp. 251–270.CrossRefGoogle Scholar
  47. 47.
    I. Pinnau, Z. He, A. R. da Costa, K. D. Amo, and R. Daniels, US Patent No. 6 361 582 (2002).Google Scholar
  48. 48.
    I. Pinnau, Z. He, A. R. da Costa, K. D. Amo, and R. Daniels, US Patent No. 6 361 583 (2002).Google Scholar
  49. 49.
    V. Arcella, P. Colaianna, P. Maccone, A. Sanguineti, A. Gordano, G. Clarizia, and E. Drioli, J. Membr. Sci. 163, 203 (1999).CrossRefGoogle Scholar
  50. 50.
    R. S. Prabhakar, B. D. Freeman, and I. Roman, Macromolecules 37, 7688 (2004).CrossRefGoogle Scholar
  51. 51.
    N. B. McKeown, P. M. Budd, K. J. Msayib, B. S. Ghanem, H. J. Kingston, C. E. Tattershall, S. Makhseed, K.J. Reynolds, and D. Fritsch, Chem. Eur. J. 11, 2610 (2005).CrossRefGoogle Scholar
  52. 52.
    L. M. Robeson, J. Membr. Sci. 62, 165 (1991).CrossRefGoogle Scholar
  53. 53.
    L. M. Robeson, J. Membr. Sci. 320, 390 (2008).CrossRefGoogle Scholar
  54. 54.
    K. Ohlrogge and K. Stürken, “The Separation of Organic Vapors from Gas Streams by Means of Membranes, in Membrane Technology in the chemical Industry, Part II: Current Application and Perspectives, Ed. by S. P. Nunes and V. Peinemann (Wiley-VCH, Veinheim, 2001), pp. 93–118.Google Scholar
  55. 55.
    R. W. Baker, J. G. Wijmans, and J. H. Kaschemekat, J. Membr. Sci. 151, 55 (1998).CrossRefGoogle Scholar
  56. 56.
    Z. He, I. Pinnau, and A. Morisato, Desalination 146, 11 (2002).CrossRefGoogle Scholar
  57. 57.
    S. Thomas, I. Pinnau, N. Du, and M. D. Guiver, J. Membr. Sci. 333, 125 (2009).CrossRefGoogle Scholar
  58. 58.
    S. W. Kang, J. H. Kim, K. Char, J. Won, and Y. S. Kang, J. Membr. Sci. 285, 102 (2006).CrossRefGoogle Scholar
  59. 59.
    J. H. Kim, D. H. J. Won, H. Jinnai, and Y. S. Kang, J. Membr. Sci. 281, 369 (2006).CrossRefGoogle Scholar
  60. 60.
    J. Caro, M. Noack, and P. Kolsch, Adsorption 11, 2215 (2005).CrossRefGoogle Scholar
  61. 61.
    T. Arnot, “Aerobic Membrane Bioreactor Technology”, in ProMembrane Conference, Sfax (Tunisia), 2008.Google Scholar
  62. 62.
    “Liquid and Gas Separation Membranes Market Set for Solid Growth”, Membrane Technol. 4, 3 (2009).Google Scholar
  63. 63.
    W. J. Koros and R. Mahajan, Polym. Eng. Sci. 42, 1420 (2002).CrossRefGoogle Scholar
  64. 64.
    G. Clarizia, C. Algieri, and E. Drioli, Polymer 45, 5671 (2004).CrossRefGoogle Scholar
  65. 65.
    M. Woo, J. Choi, and M. Tsapatsis, Micropor. Mesopor. Mater. 110, 330 (2008).CrossRefGoogle Scholar
  66. 66.
    “UBE Expands Gas Separation Membrane Production”, Membrane Technol. 11, 4 (2006).Google Scholar
  67. 67.
    U. Shanbhag, E. S. Sanders, S. S. Kulkarni, I. C. Roman, T. Li, O. M. Ekiner, C. Anderson, S. Karode, and C. Kim, “Gas Separation Membranes at Air Liquide/Medal”, in The 2008 Annual Meeting, Philadelphia, PA (USA), 2008.Google Scholar
  68. 68.
    www.airproducts.com.Google Scholar
  69. 69.
    R. M. Kelly, (Cynara), US Patent No. 4 659 343 (1987).Google Scholar
  70. 70.
    A. Callison and G. Davidson, Oil Gas J. (2007).Google Scholar
  71. 71.
    www.natcogroup.com.Google Scholar
  72. 72.
    R. Baker, in Membrane Operations, Ed. by E. Drioli and L. Giorno (Wiley-VCH, 2009), Chap. 8, pp. 167–194.Google Scholar
  73. 73.
    Y. Huang and D. R. Paul, Polymer 45, 8377 (2005).CrossRefGoogle Scholar
  74. 74.
    U. Razdan, S. V. Joshi, and V. J. Shah, Curr. Sci. 6, 761 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • P. Bernardo
    • 1
  • E. Drioli
    • 1
    • 2
  1. 1.National Research Council—Institute for Membrane Technology (ITM-CNR), Via P. Buccic/o University of CalabriaRende CSItaly
  2. 2.Department of Chemical Engineering and MaterialsUniversity of CalabriaRende CSItaly

Personalised recommendations