Petroleum Chemistry

, Volume 50, Issue 1, pp 78–86 | Cite as

The effect of H2S on the selectivity of light alkenes in the FE-Mn-catalyzed Fischer-Tropsch synthesis

  • H. Hadadzadeh
  • A. A. Mirzaei
  • M. Morshedi
  • A. Raeisi
  • M. Feyzi
  • N. Rostamizadeh


Iron-manganese oxides are prepared using a co-precipitation procedure and studied for the conversion of synthesis gas to light olefins. In particular, the effect of a range of preparation variables is investigated in details. In this investigation, sulfur absorption and effect of sulfur poisoning on Fe-Mn catalysts have been studied. In the Fischer-Tropsch synthesis process, the poisoning of the catalyst is one of the important parameters causing a decrease in the catalyst activity, declaring the sulfur compounds as virulent poisons in this process. In the present investigation, poisoning of Fe-Mn catalysts were performed in a gas circulation system and H2S was injected into a circulation loop. The prepared catalysts were exposed to a mixture of H2S and N2 at about 450°C in the stainless-steel micro reactor via co-precipitation method. H2S was produced by addition of H2SO4 to Na2S × H2O and this gas was mixed with an inert carrier gas (N2). Comparing the activity and selectivity of fresh and poisoned catalysts, indicates that the selectivity and CO conversion are affected by high-level sulfur adsorbed on the catalysts. The results show that the CO conversion and selectivity with respect to methane production and coke formation were decreased, but the selectivity of light alkenes such as propylene was increased over poisoned catalysts. Characterization of both precursors and calcined catalysts by powder X-ray diffraction, BET specific surface area and thermal analysis methods such as TGA and DSC showed that the poisoning of Fe-Mn catalysts influenced the catalyst structure.


Ageing Time Petroleum Chemistry Thermal Gravimetric Analysis Fresh Catalyst Light Olefin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. Chernavskii, Kinet. Catal. 46(5), 634 (2005).CrossRefGoogle Scholar
  2. 2.
    A. Sarkar, G. Jacobs, Y. Ji, et al., Catal. Lett. 121(1), 1 (2007).CrossRefGoogle Scholar
  3. 3.
    L. A. Vytnova, E.I. Bogolepova, A. N. Shuikin, et al., Pet. Chem. 46(2), 103 (2006).CrossRefGoogle Scholar
  4. 4.
    B. H. Davis, Top. Catal. 32(3), 143 (2005).CrossRefGoogle Scholar
  5. 5.
    L. A. Vytnova, E. I. Bogolepova, A. N. Shuikin, et al., Pet. Chem. 46(5), 324 (2006).CrossRefGoogle Scholar
  6. 6.
    M. N. Yakubovich, Pet. Chem. 48(1), 32 (2008).Google Scholar
  7. 7.
    A. Y. Krylova and E. A. Kozyukov, Solid Fuel Chem. 41(6), 335 (2007).CrossRefGoogle Scholar
  8. 8.
    W. Linghu, X. Liu, X. Li, and K. Fujimoto, Catal. Lett. 108(1), 11 (2006).CrossRefGoogle Scholar
  9. 9.
    M. N. Yakubovich and V. L. Struzhko, Pet. Chem. 46(4), 257 (2006).CrossRefGoogle Scholar
  10. 10.
    E. G. Derouane, V. Parmon, F. Lemos, and F. R. Ribeiro, Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities in NATO Science Series II: Mathematics, Physics and Chemistry, 191 (2005).Google Scholar
  11. 11.
    C. H. Zhang, Y. Yang, B. T. Teng, et al., J. Catal. 237(2), 405 (2006).CrossRefGoogle Scholar
  12. 12.
    J. Yang, Y. Sun, Y. Tang, et al., J. Mol. Catal., A: Chem. 245(1–2), 26 (2006).CrossRefGoogle Scholar
  13. 13.
    A. Martinez and C. Lopez, Appl. Catal., A 294(2), 251 (2005).CrossRefGoogle Scholar
  14. 14.
    C. Zhang, B. Teng, Y. Yang, et al. J. Mol. Catal., A: Chem. 239(1–2), 15 (2005).CrossRefGoogle Scholar
  15. 15.
    J. Li and N. J. Coville, Appl. Catal., A 181(1), 201 (1999).CrossRefGoogle Scholar
  16. 16.
    J. Li and N. J. Coville, Appl. Catal., A 208(1–2), 177 (2001).Google Scholar
  17. 17.
    L. Shi, J. Chen, K. Fang, and Y. Sun, Fuel 87(4–5), 521 (2008).CrossRefGoogle Scholar
  18. 18.
    B. Shi, G. Jacobs, D. Sparks and B. H. Davis, Fuel 84(9), 1093 (2005).CrossRefGoogle Scholar
  19. 19.
    T. Li, Y. Yang, C. Zhang, et al., Fuel 86(7–8), 921 (2007).CrossRefGoogle Scholar
  20. 20.
    A. Raje, J. R. Inga, and B. H. Davis, Fuel 76(3), 273 (1997).CrossRefGoogle Scholar
  21. 21.
    B. T. Teng, J. Chang, J. Yang, et al., Fuel 84(7–8), 917 (2005).CrossRefGoogle Scholar
  22. 22.
    B. Wu, L. Bai, H. Xiang, et al., Fuel 83(2), 205 (2004).CrossRefGoogle Scholar
  23. 23.
    L. Bai, H. W. Xiang, Y. W. Li, et al., Fuel 81(11–12), 1577 (2002).CrossRefGoogle Scholar
  24. 24.
    J. He, Y. Yoneyama, B. Xu, et al., Langmuir 21(5), 1699 (2005).CrossRefGoogle Scholar
  25. 25.
    T. S. Zhao, J. Chang, Y. Yoneyama, and N. Tsubaki, Ind. Eng. Chem. Res. 44(4), 769 (2005).CrossRefGoogle Scholar
  26. 26.
    Y. Yoneyama, J. He, Y. Morii, et al., Catal. Today 104(1), 37 (2005).CrossRefGoogle Scholar
  27. 27.
    A. Zhang, M. Kaiho, H. Yasuda, et al., Energy 30(11–12), 2243 (2005).CrossRefGoogle Scholar
  28. 28.
    C. Costabile, G. Milano, and L. Cavallo, et al., Polymer 45(2), 467 (2004).CrossRefGoogle Scholar
  29. 29.
    C. H. Tsai and T. H. Hsieh, Ind. Eng. Chem. Res. 43(15), 4043 (2004).CrossRefGoogle Scholar
  30. 30.
    N. O. Ikenaga, H. Taniguchi, A. Watanabe, and T. Suzuki, Fuel 79(3–4), 273 (2000).CrossRefGoogle Scholar
  31. 31.
    A. Martino, J. P. Wilcoxon, and J. S. Kawola, Energy Fuels 8(6), 1289 (1994).CrossRefGoogle Scholar
  32. 32.
    M. Yamada, N. Koizumi, A. Miyazawa, and T. Furukawa, Catal. Lett. 78(1–4), 195 (2002).CrossRefGoogle Scholar
  33. 33.
    J. Beck and T. Hilbertt, Chemie 626(1), 72 (2000).Google Scholar
  34. 34.
    T. Kaneko, T. Koyama, K. Tazawa, et al., J. Jpn. Inst. Energy 77(1), 321 (1998).Google Scholar
  35. 35.
    S. Vijay, E. E. Wolf, J. T. Miller, and A. J. Kropf, Appl. Catal. 264(1), 125 (2004).CrossRefGoogle Scholar
  36. 36.
    J. W. N. Verdite, Spectroscopy in Catalysts, 2nd Ed., Wiley-VCH, 2000.Google Scholar
  37. 37.
    S. J. Tauster, S. C. Fung, and R. L. Garten, J. Am. Chem. Soc. 100(1), 170 (1978).CrossRefGoogle Scholar
  38. 38.
    H. B. Zhang and G. L. Schrader, J. Catal. 95(1), 325 (1985).CrossRefGoogle Scholar
  39. 39.
    M. D. Shroff, D. S. Kalakkad, and K. E. Coulter, et al., J. Catal. 156(2), 185 (1995).CrossRefGoogle Scholar
  40. 40.
    Y. Yang, H. W. Xiang, Y. Y. Xu, et al., Appl. Catal., A 266(2), 181 (2004).CrossRefGoogle Scholar
  41. 41.
    A. A. Mirzaei, R. Habibpour, and E. Kashi, Appl. Catal., A 296(2), 222 (2005).CrossRefGoogle Scholar
  42. 42.
    A. A. Mirzaei, M. Faizi, and R. Habibpour, Appl. Catal., A 306, 98 (2006).CrossRefGoogle Scholar
  43. 43.
    A. A. Mirzaei, R. Habibpour, M. Faizi, and E. Kashi, Appl. Catal., A 301(2), 272 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • H. Hadadzadeh
    • 1
  • A. A. Mirzaei
    • 2
  • M. Morshedi
    • 1
  • A. Raeisi
    • 2
  • M. Feyzi
    • 2
  • N. Rostamizadeh
    • 2
  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran
  2. 2.Department of ChemistryUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations