Petroleum Chemistry

, 49:436

Effect of various sono-oxidation parameters on the desulfurization of diesel oil

Article

Abstract

The influences of ultrasonic intensity, H2O2 concentration, ratio of H2O2 to oil and the addition of Fenton reagent on the oxidative desulfurization of diesel oil under ultrasonic irradiation were investigated. It was observed that the oxidative desulfurization of diesel oil fitted pseudo-first-order kinetics under our experimental conditions. Increasing the ultrasonic intensity increased the oxidative desulfurization efficiency of diesel oil. The addition of H2O2 enhanced the ultrasonic oxidative desulfurization efficiency of diesel oil. The sono-oxidation treatment in combination with Fenton reagent showed a synergistic effect for diesel oil desulfurization. The catalytic oxidative desulfurization process under ultrasonic irradiation process on diesel oils is an efficient and promising method.

References

  1. 1.
    M. Breys, D. Mariadassou, S. Pessayre, et al., Catal. Today 84, 129 (2003).CrossRefGoogle Scholar
  2. 2.
    L. N. Jean, in Proceedings of 101 National Petrochemical & Refiners Association, San Antonio, 2003.Google Scholar
  3. 3.
    X. Liang, M. K. Sakanishi, and I. Mochida, Fuel 73, 1667 (1994).CrossRefGoogle Scholar
  4. 4.
    C. S. Song, Catal. Today 86, 211 (2003).CrossRefGoogle Scholar
  5. 5.
    Y. Y. Zhao, R. Feng, Y. S. Shi, and M. Q. Hu, Ultrason. Sonochem. 12, 173 (2005).CrossRefGoogle Scholar
  6. 6.
    A. Canals, A. Cuesta, L. Gras, and M. R. Hernändez, Ultrason. Sonochem. 9, 143 (2002).CrossRefGoogle Scholar
  7. 7.
    A. Grönroos, H. Kyllönen, K. Korpijärvi, et al., Ultrason. Sonochem. 12, 115 (2005).CrossRefGoogle Scholar
  8. 8.
    K. C. Teo, Y. Xu, and C. Yang, Ultrason. Sonochem. 8, 241 (2001).CrossRefGoogle Scholar
  9. 9.
    P. R. Gogate, S. Mujumdar, and A. B. Pandit, Ind. Eng. Chem. Res. 41, 3370 (2002).CrossRefGoogle Scholar
  10. 10.
    G. Y. Chen, Y. Gu, and K. C. Li, in Proceedings of 19 Annual Wastewater Treatment Technology Conference, Tainan, Taiwan, 1994, Vol. 11, p. 14.Google Scholar
  11. 11.
    J. H. Lin and Y. S. Ma, J. Environ. Eng. 126, 130 (2000).CrossRefGoogle Scholar
  12. 12.
    A. A. Burbano, D. D. Dionysiou, M. T. Suidan, and T. L. Richardson, Water Res. 39, 107 (2005).CrossRefGoogle Scholar
  13. 13.
    H. Mei, B. W. Mei, and T. F. Yen, Fuel 82, 405 (2003).CrossRefGoogle Scholar
  14. 14.
    T. J. Mason, J. P. Lorimer, and D. M. Bates, Ultrasonics 30, 40 (1992).CrossRefGoogle Scholar
  15. 15.
    Y. S. Ma, Z. R. Wu, and Z. G. Lin, Water Wastewater Eng. 23, 12 (1997).Google Scholar
  16. 16.
    K. S. Suslick, Sci. Am. 2, 81 (1989).Google Scholar
  17. 17.
    K. S. Suslick, D. A. Hammerton, and R. E. Cline, J. Am. Chem. Soc. 108, 5641 (1986).CrossRefGoogle Scholar
  18. 18.
    G. X. Yu, S. X. Lu, H. Chen, and Z. N. Zhu, Energy Fuels 19, 447 (2005).CrossRefGoogle Scholar
  19. 19.
    M. Te, C. Fairbridge, and Z. Ring, Appl. Catal., A 219, 267 (2001).CrossRefGoogle Scholar
  20. 20.
    A. Rehorek, M. Tauber, and G. Gubitz, Ultrason. Sonochem. 11, 177 (2004).CrossRefGoogle Scholar
  21. 21.
    M. H. Entezari, C. Petrier, and P. Devidal, Ultrason. Sonochem. 10, 103 (2003).CrossRefGoogle Scholar
  22. 22.
    Y. Ku, Y. H. Tu, and C. M. Ma, Water Res. 39, 1093 (2005).CrossRefGoogle Scholar
  23. 23.
    A. D. Visscher and H. V. Langenhove, Ultrason. Sonochem. 5, 87 (1998).CrossRefGoogle Scholar
  24. 24.
    Y. Shiraishi, K. Tachibana, T. Hirai, and I. Komasawa, Ind. Eng. Chem. Res. 41, 4362 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department of Petroleum Chemical Engineering, School of Petrochemical EngineeringLiaoning Shihua UniversityFushunP. R.China
  2. 2.School of Chemical Engineering and TechnologyHarbin Institute of TechnologyHarbinP. R.China

Personalised recommendations