Petroleum Chemistry

, Volume 48, Issue 2, pp 100–104 | Cite as

Specifics of the deactivation of acid and zinc-containing propane aromatization catalysts

  • E. V. Asachenko
  • O. V. Rodina
  • V. V. Ordomskii
  • Yu. V. Gur’ev
  • I. I. Ivanova
Article

Abstract

The specifics of the deactivation of acid and Zn-containing MFI catalysts in the propane aromatization reaction at high-feed space velocities (600–2400 h−1) and temperatures (550–610°C) was studied. The kinetics of the buildup of carbonaceous products (coke) was investigated in situ during the catalytic reaction in a thermal analyzer coupled to a mass spectrometer and a gas chromatograph (TA-MS-GC). The nature of the coke was studied by means of differential thermal analysis (DTA) and elemental analysis. It was found that the buildup of heavy coke on the H-MFI zeolite takes place on the outer crystal surface and pore openings, thus leading to a decrease in the propane conversion at the beginning of the reaction. In contrast, light coke appears first and is transformed to heavy coke at later stages on Zn/H-MFI. The light coke leads to a decrease in the yield of methane, ethane, and ethylene, and the heavy coke impedes the formation of aromatic hydrocarbons.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kh. M. Minachev and A. A. Dergachev, Usp. Khim. 59, 1522 (1990).Google Scholar
  2. 2.
    T. Mole, J. R. Anderson, and G. Creer, Appl. Catal. 17, 141 (1985).CrossRefGoogle Scholar
  3. 3.
    V. P. Sitnik, N. V. Nekrasov, T. V. Vasina, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 4,727 (1990).Google Scholar
  4. 4.
    A. Hagen and F. Roessner, Catal. Rev. Sci. Eng., 42, 403 (2000).CrossRefGoogle Scholar
  5. 5.
    J. A. Biscardi and E. Iglesia, Catal. Today, 31, 207 (1996).CrossRefGoogle Scholar
  6. 6.
    Y. Ono, Catal. Rev. Sci. Eng., 34, 179 (1992).CrossRefGoogle Scholar
  7. 7.
    C. A. Emeis, J. Catal., 141, 347 (1993).CrossRefGoogle Scholar
  8. 8.
    Y. G. Kolyagin, V. V. Ordomsky, Y. Z. Khimyak, et al., J. Catal., 238, 122 (2006).CrossRefGoogle Scholar
  9. 9.
    T. V. Vasina, V. P. Sitnik, V. P. Preobrazhenskii, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 3, 528 (1989).Google Scholar
  10. 10.
    V. I. Yakerson, T. V. Vasina, L. I. Lafer, et al., Dokl. Akad. Nauk SSSR, 307 923 (1989).Google Scholar
  11. 11.
    V. I. Yakerson, T. V. Vasina, L. I. Lafer, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 9, 1962 (1991).Google Scholar
  12. 12.
    P. Magnoux and M. Guisnet, Appl. Catal., 38, 341 (1988).CrossRefGoogle Scholar
  13. 13.
    V. I. Yakerson, V. D. Nissenbaum, T. V. Vasina, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 6, 1244 (1990).Google Scholar
  14. 14.
    A. P. Rudenko, I. I. Kulakova, and S. Ya. Kurganova, in Scientific Basics of Catalytic Conversion of Hydrocarbons (Naukova Dumka, Kiev, 1977) [in Russian].Google Scholar
  15. 15.
    C. L. Li, O. Novaro, E. MuOoz, et al., Appl. Catal. A: Gen., 199, 211 (2000).CrossRefGoogle Scholar
  16. 16.
    M. A. Callejas, M. T. Martinez, T. Blasco, and E. Sastre, Appl. Catal. A: Gen., 218, 181 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • E. V. Asachenko
    • 1
  • O. V. Rodina
    • 1
  • V. V. Ordomskii
    • 1
  • Yu. V. Gur’ev
    • 1
  • I. I. Ivanova
    • 1
  1. 1.Faculty of ChemistryMoscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations