Advertisement

Computational Mathematics and Mathematical Physics

, Volume 58, Issue 11, pp 1687–1707 | Cite as

Factorial Transformation for Some Classical Combinatorial Sequences

  • V. P. Varin
Article
  • 6 Downloads

Abstract

Factorial transformation known from Euler’s time is a very powerful tool for summation of divergent power series. We use factorial series for summation of ordinary power generating functions for some classical combinatorial sequences. These sequences increase very rapidly, so OGFs for them diverge and mostly unknown in a closed form. We demonstrate that factorial series for them are summable and expressed in known functions. We consider among others Stirling, Bernoulli, Bell, Euler and Tangent numbers. We compare factorial transformation with other summation techniques such as Padé approximations, transformation to continued fractions, and Borel integral summation. This allowed us to derive some new identities for GFs and express their integral representations in a closed form.

Keywords:

factorial transformation factorial series continued fractions Stirling Bernoulli Bell Euler and Tangent numbers divergent power series generating functions 

REFERENCES

  1. 1.
    S. K. Lando, Lectures on Generating Functions (Am. Math. Soc., Providence, R.I., 2003; MKhAMO, Moscow, 2004).Google Scholar
  2. 2.
    T. Arakawa, T. Ibukiyama, and M. Kaneko, Bernoulli Numbers and Zeta Functions (Springer, Japan, 2014).CrossRefzbMATHGoogle Scholar
  3. 3.
    J. Frame, “The Hankel power sum matrix inverse and the Bernoulli continued fraction,” Math. Comput. 33 (146), 815–826 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    L. Euler, “De seriebus divergentibus,” Novi Comment. Acad. Sci. Petropolitanae 5, 205–237 (1754/1755). = Opera Omnia, Ser. I, Teubner, Leipzig 14, 585–617 (1925).Google Scholar
  5. 5.
    N. Nielsen, Die Gammafunktion (Teubner, Leipzig, 1906).Google Scholar
  6. 6.
    E. J. Weniger, “Summation of divergent power series by means of factorial series” (2010). http:// arxiv.org/abs/1005.0466v1.Google Scholar
  7. 7.
    K. Knopp, Theory and Applications of Infinite Series (Blackie & Son, London, 1946).Google Scholar
  8. 8.
    Sloane Online Encyclopedia of Integer Sequences. http://oeis.org.Google Scholar
  9. 9.
    S. Khrushchev, Orthogonal Polynomials and Continued Fractions (Cambridge Univ. Press, Cambridge, 2008).CrossRefzbMATHGoogle Scholar
  10. 10.
    R. Apéry, “Irrationalité de \(\zeta (2)\) et \(\zeta (3)\),” Astérisque 61, 11–13 (1979).zbMATHGoogle Scholar
  11. 11.
    S. R. Finch, Mathematical Constants (Cambridge Univ. Press, Cambridge, 2003).zbMATHGoogle Scholar
  12. 12.
    B. Candelpergher, Ramanujan Summation of Divergent Series (Springer, Berlin, 2017).CrossRefzbMATHGoogle Scholar
  13. 13.
    G. N. Watson, “The transformation of an asymptotic series into a convergent series of inverse factorials,” Rend. Circ. Mat. Palermo 34, 41–88 (1912).CrossRefzbMATHGoogle Scholar
  14. 14.
    W. Petkovšek, H. S. Wilf, and D. Zeilberger, A = B (Taylor and Francis, London, 1996).Google Scholar
  15. 15.
    M. Bernstein and N. J. A. Sloane, “Some canonical sequences of integers,” Linear Algebra Appl. 226–228, 57–72 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    G. H. Hardy, Divergent Series (Chelsea, New York, 1992).zbMATHGoogle Scholar
  17. 17.
    J. Glimm and A. Jaffe, Quantum Physics, 2nd ed. (Springer, Berlin, 1987).CrossRefzbMATHGoogle Scholar
  18. 18.
    C. Bender and C. Heissenberg, “Convergent and divergent series in physics” (2016). https:// arxiv.org/abs/1703.05164v2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Keldysh Institute of Applied Mathematics RASMoscowRussia

Personalised recommendations