Advertisement

Computational Mathematics and Mathematical Physics

, Volume 58, Issue 11, pp 1838–1855 | Cite as

Various Manifestations of Wood Anomalies in Locally Distorted Quantum Waveguides

  • S. A. Nazarov
Article
  • 6 Downloads

Abstract

Anomalies of the diffraction pattern at near-threshold frequencies of the continuous spectrum of a cylindrical quantum waveguide with regular (smooth gentle) or singular (small cavities and bumps) perturbations of the boundary are studied. Wood anomalies are characterized by rapid variations in the scattering matrix near the thresholds. Conditions under which a Wood anomaly is absent, appears, and enhances are obtained by constructing asymptotics of solutions to the Dirichlet problem for the Helmholtz equation. The results are obtained by analyzing an artificial object—the augmented scattering matrix—and involve only operations with real values of the spectral parameter, but the relation between Wood anomalies and complex resonance points is also considered. Generated by almost standing waves, threshold resonances that cause near-threshold anomalies of other types are discussed.

Keywords:

quantum waveguide regular and singular perturbations of the boundary asymptotics resonances near-threshold frequencies Wood anomaly 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 17-11-01003.

REFERENCES

  1. 1.
    C. H. Wilcox, Scattering Theory for Diffraction Gratings (Springer, Singapore, 1997).zbMATHGoogle Scholar
  2. 2.
    S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter, Berlin, 1994).CrossRefzbMATHGoogle Scholar
  3. 3.
    R. Wood, “On the remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18, 269–275 (1902).CrossRefGoogle Scholar
  4. 4.
    I. V. Kamotskii and S. A. Nazarov, “The augmented scattering matrix and exponentially decaying solutions of an elliptic problem in a cylindrical domain,” J. Math. Sci. (New York) 111, 3657–3666 (2002).MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide,” Theor. Math. Phys. 167 (2), 606–627 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    L. A. Vainshtein, Diffraction Theory and Factorization Method (Sovetskoe Radio, Moscow, 1966) [in Russian].Google Scholar
  7. 7.
    S. A. Nazarov, “Scattering anomalies in a resonator above the thresholds of the continuous spectrum,” Sb. Math. 206 (6), 782–813 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. I. Korolkov, S. A. Nazarov, and A. V. Shanin, “Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves,” Z. Angew. Math. Mech. 96 (10), 1245–1260 (2016).MathSciNetCrossRefGoogle Scholar
  9. 9.
    W. Bulla, F. Gesztesy, W. Renrer, and B. Simon, “Weakly coupled bound states in quantum waveguides,” Proc. Am. Math. Soc. 125 (8), 1487–1495 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    R. R. Gadyl’shin, “Local perturbations of quantum waveguides,” Theor. Math. Phys. 145, 1678–1690 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    V. V. Grushin, “On the eigenvalues of finitely perturbed Laplace operators in infinite cylindrical domains,” Math. Notes 75, 331–340 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold,” Sib. Math. J. 51 (5), 866–878 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    S. A. Nazarov, “Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle,” Comput. Math. Math. Phys. 52 (3), 448–464 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide,” J. Funct. Anal. 47, 195–209 (2013).CrossRefzbMATHGoogle Scholar
  15. 15.
    S. A. Nazarov, “Localized elastic fields in periodic waveguides with defects,” J. Appl. Mech. Tech. Phys. 52, 311 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. A. Nazarov, “Nonreflection and trapping of elastic waves in a slightly curved isotropic strip,” Phys. Dokl. 59 (3), 139–143 (2014).CrossRefGoogle Scholar
  17. 17.
    S. A. Nazarov, “Near-threshold effects of the scattering of waves in a distorted elastic two-dimensional waveguide,” J. Appl. Math. Mech. 79 (4), 374–387 (2015).MathSciNetCrossRefGoogle Scholar
  18. 18.
    L. I. Mandelstam, Lectures on Optics, Relativity Theory, and Quantum Mechanics (Akad. Nauk SSSR, Moscow, 1947), Vol. 2 [in Russian].Google Scholar
  19. 19.
    I. I. Vorovich and V. A. Babeshko, Mixed Dynamic Problems of Elasticity Theory for Nonclassical Domains (Nauka, Moscow, 1979) [in Russian].zbMATHGoogle Scholar
  20. 20.
    S. A. Nazarov, “Umov–Mandelstam radiation conditions in elastic periodic waveguides,” Sb. Math. 205 (7), 953–982 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    N. A. Umov, Equations of Energy Transfer in Bodies (Tipogr. Ul’rikha i Shul’tse, Odessa, 1874) [in Russian].Google Scholar
  22. 22.
    J. H. Poynting, “On the transfer of energy in the electromagnetic field,” Phil. Trans. R. Soc. London 175, 343–361 (1884).CrossRefzbMATHGoogle Scholar
  23. 23.
    V. A. Kozlov, S. A. Nazarov, and A. Orlof, “Trapped modes supported by localized potentials in the zigzag graphene ribbon,” C. R. Acad. Sci. Paris Ser. 1 354 (1), 63–67 (2016).CrossRefzbMATHGoogle Scholar
  24. 24.
    M. D. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic, New York, 1964).zbMATHGoogle Scholar
  25. 25.
    A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Nauka, Moscow, 1989; Am. Math. Soc., RI, Providence, 1992).Google Scholar
  26. 26.
    M. I. Vishik and L. A. Ljusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter,” Am. Math. Soc. Transl. 20 (2), 239–364 (1962).MathSciNetGoogle Scholar
  27. 27.
    W. G. Mazja, S. A. Nasarow, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten (Akademie-Verlag, Berlin, 1991), Vol. 1 (English translation: V. Maz’ya, S. Nazarov, and B. Plamenevsky, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains (Birkhäuser, Basel, 2000), Vol. 1).Google Scholar
  28. 28.
    V. A. Kondrat’ev, “Boundary value problems for elliptic equations in domains with conical or corner points,” Tr. Mosk. Mat. O–va 16, 219–292 (1963).Google Scholar
  29. 29.
    V. G. Maz’ya and B. A. Plamenevskii, “On the coefficients in asymptotics of solutions of elliptic boundary value problems in domains with conical points,” Math. Nachr. 76, 29–60 (1977).MathSciNetCrossRefGoogle Scholar
  30. 30.
    S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain,” in Sobolev Spaces in Mathematics, Vol. 2, Ed. by V. Maz’ya, International Mathematical Series (Springer, New York, 2008), Vol. 9, pp. 261–309.Google Scholar
  31. 31.
    T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, 1966).CrossRefzbMATHGoogle Scholar
  32. 32.
    G. Polya and G. Szego, Isoperimetric Inequalities in Mathematical Physics (Periodical Service, 1957).zbMATHGoogle Scholar
  33. 33.
    L. Guilopé, “Théorie spctrale de quelques varietés à bouts,” Ann. Sci. Ecole Norm. Sup. 22 (4), 137–160 (1989).CrossRefGoogle Scholar
  34. 34.
    A. Aslanyan, L. Parnovski, and D. Vassiliev, “Complex resonances in acoustic waveguides,” Q. J. Mech. Appl. Math. 53, 429–447 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    S. Molchanov and B. Vainberg, “Scattering solutions in networks of thin fibers: Small diameter asymptotics,” Commun. Math. Phys. 273 (2), 533–559 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    D. Grieser, “Spectra of graph neighborhoods and scattering,” Proc. London Math. Soc. 97 (3), 718–752 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions,” J. Math. Anal. Appl. 449 (1), 907–925 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    S. A. Nazarov, “Almost standing waves in a periodic waveguide with a resonator and near-threshold eigenvalues,” St. Petersburg Math. J. 28 (3), 377–410 (2017).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical Engineering, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations