Iterative Approximate Factorization of Difference Operators of High-Order Accurate Bicompact Schemes for Multidimensional Nonhomogeneous Quasilinear Hyperbolic Systems

Article
  • 3 Downloads

Abstract

For solving equations of multidimensional bicompact schemes, an iterative method based on approximate factorization of their difference operators is proposed. The method is constructed in the general case of systems of two- and three-dimensional quasilinear nonhomogeneous hyperbolic equations. The unconditional convergence of the method is proved as applied to the two-dimensional scalar linear advection equation with a source term depending only on time and space variables. By computing test problems, it is shown that the new iterative method performs much faster than Newton’s method and preserves a high order of accuracy.

Keywords

hyperbolic equations bicompact and compact schemes factorization iterative methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Stoker, Water Waves: The Mathematical Theory with Applications (Wiley, New York, 1992).CrossRefMATHGoogle Scholar
  2. 2.
    G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1999).CrossRefMATHGoogle Scholar
  3. 3.
    R. Brun, Introduction to Reactive Gas Dynamics (Oxford Univ. Press, Oxford, New York, 2009).CrossRefMATHGoogle Scholar
  4. 4.
    C. Cercignani, The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988).CrossRefMATHGoogle Scholar
  5. 5.
    J. Glimm, “The continuous structure of discontinuities,” Lect. Notes Phys. 344, 177–186 (1986).MathSciNetMATHGoogle Scholar
  6. 6.
    M. Renardy, W. J. Hrusa, and J. A. Nohel, Mathematical Problems in Viscoelasticity (Longman Sci. Tech., Essex, New York, 1987).MATHGoogle Scholar
  7. 7.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Chapman and Hall/CRC, London, 2001; Fizmatlit, Moscow, 2012).MATHGoogle Scholar
  8. 8.
    A. S. Kholodov, “Numerical methods for solving hyperbolic equations and systems,” in Encyclopedia of Low-Temperature Plasmas (Yanus-K, Moscow, 2008), Vol. VII-1, Part 2, pp. 141–174 [in Russian].Google Scholar
  9. 9.
    M. N. Mikhailovskaya and B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations,” Comput. Math. Math. Phys. 52 (4), 578–600 (2012).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    B. V. Rogov, “High-order accurate running compact scheme for multidimensional hyperbolic equations,” Dokl. Math. 86 (1), 582–586 (2012).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    B. V. Rogov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations,” Comput. Math. Math. Phys. 53 (2), 205–214 (2013).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].MATHGoogle Scholar
  13. 13.
    W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations (Springer, Berlin, 2003).CrossRefMATHGoogle Scholar
  14. 14.
    A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).MATHGoogle Scholar
  15. 15.
    N. N. Yanenko, The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables (Nauka, Novosibirsk, 1967; Springer-Verlag, Berlin, 1971).MATHGoogle Scholar
  16. 16.
    H. Holden, K. H. Karlsen, K.-A. Lie, and N. H. Risebro, Splitting Methods for Partial Differential Equations with Rough Solutions (Eur. Math. Soc., Zurich, 2010).CrossRefMATHGoogle Scholar
  17. 17.
    P. N. Vabishchevich, Additive Operator-Difference Schemes: Splitting Schemes (De Gruyter, Berlin, 2014).MATHGoogle Scholar
  18. 18.
    Q. Sheng, “Solving linear partial differential equations by exponential splitting,” IMA J. Numer. Anal. 9 (2), 199–212 (1989).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Q. Sheng, “ADI methods,” Encyclopedia of Applied and Computational Mathematics (Springer, Berlin, 2015), pp. 25–33.CrossRefGoogle Scholar
  20. 20.
    S. Blanes and F. Casas, “On the necessity of negative coefficients for operator splitting schemes of order higher than two,” Appl. Numer. Math. 54 (1), 23–37 (2005).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    S. Blanes and F. Casas, A Concise Introduction to Geometric Numerical Integration (CRC, London, 2016).CrossRefMATHGoogle Scholar
  22. 22.
    P. J. Van der Houwen and B. P. Sommeijer, “Approximate factorization for time-dependent partial differential equations,” J. Comput. Appl. Math. 128 (1–2), 447–466 (2001).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    J. Geiser, Iterative Splitting Methods for Differential Equations (CRC, London, 2011).CrossRefMATHGoogle Scholar
  24. 24.
    L. M. Skvortsov, “Diagonally implicit FSAL Runge–Kutta methods for stiff and differential algebraic systems,” Mat. Model. 14 (2), 3–17 (2002).MathSciNetMATHGoogle Scholar
  25. 25.
    E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin, 2009).CrossRefMATHGoogle Scholar
  26. 26.
    M. D. Bragin and B. V. Rogov, “Minimal dissipation hybrid bicompact schemes for hyperbolic equations,” Comput. Math. Math. Phys. 56 (6), 947–961 (2016).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  2. 2.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations