Skip to main content
Log in

Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A numerical-analytical iterative method is proposed for solving generalized self-adjoint regular vector Sturm–Liouville problems with Dirichlet boundary conditions. The method is based on eigenvalue (spectral) correction. The matrix coefficients of the equations are assumed to be nonlinear functions of the spectral parameter. For a relatively close initial approximation, the method is shown to have second-order convergence with respect to a small parameter. Test examples are considered, and the model problem of transverse vibrations of a hinged rod with a variable cross section is solved taking into account its rotational inertia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Akulenko and S. V. Nesterov, High-Precision Methods in Eigenvalue Problems and Their Applications (Chapman and Hall/CRC, Boca Raton, 2005).

    MATH  Google Scholar 

  2. L. D. Akulenko and S. V. Nesterov, “The natural oscillations of distributed inhomogeneous systems described by generalized boundary value problems,” J. Appl. Math. Mech. 63 (4), 617–625 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  3. L. D. Akulenko and S. V. Nesterov, “Oscillations of interacting systems with distributed parameters,” Mech. Solids 34 (2), 11–19 (1999).

    Google Scholar 

  4. J. D. Pryce, Numerical Solution of Sturm–Liouville Problems (Oxford Univ. Press, New York, 1993).

    MATH  Google Scholar 

  5. Spectral Theory and Computational Methods of Sturm–Liouville Problems, Ed. by D. Hinton and P. W. Schaefer (Marcel Dekker, New York, 1997).

  6. Sturm–Liouville Theory: Past and Present, Ed. by W. O. Amrein, A. M. Hinz, and D. B. Pearson (Birkhäuser, Berlin, 2005).

  7. V. Ledoux, Study of Special Algorithms for Solving Sturm–Liouville and Schrodinger Equations (Univ. Gent, Gent, 2007).

    Google Scholar 

  8. A. Zettl, Sturm–Liouville Theory (Am. Math. Soc., Providence, R.I., 2010).

    Book  MATH  Google Scholar 

  9. A. A. Abramov and L. F. Yukhno, “Nonlinear spectral problem for the Sturm–Liouville equations with coupled boundary conditions depending on a spectral parameter,” Comput. Math. Math. Phys. 39 (7), 1077–1091 (1999).

    MathSciNet  MATH  Google Scholar 

  10. N. B. Konyukhova and I. B. Staroverova, “Modification of the phase method for singular self-adjoint Sturm–Liouville problems,” Comput. Math. Math. Phys. 37 (10), 1143–1160 (1997).

    MathSciNet  MATH  Google Scholar 

  11. V. Adamjan, H. Langer, and M. Langer, “A spectral theory for a-rational Sturm–Liouville problem,” J. Differ. Equations 171, 315–345 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Bohner, W. Kratz, and R. Šimon Hilscher, “Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter,” Math. Nachr. 285 (11–12) 1343–1356 (2012).

    MathSciNet  MATH  Google Scholar 

  13. P. Ghelardoni, G. Gheri, and M. Marletta, “A polynomial approach to the spectral corrections for Sturm–Liouville problems,” J. Comput. Appl. Math. 185, 360–376 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Greenberg and M. Marletta, “The counting function for a-rational Sturm–Liouville problem,” Math. Nachr. 254–255 (1), 133–152 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Eschwe and M. Langer, “Variational principles for eigenvalues of self-adjoint operator functions,” Integr. Equations Operat. Theory 49, 287–321 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. V. Kravchenko and S. M. Torba, “Modified spectral parameter power series representations for solutions of Sturm–Liouville equations and their applications,” Appl. Math. Comput. 238, 82–105 (2014).

    MathSciNet  MATH  Google Scholar 

  17. J. P. Lutgen, “Eigenvalue accumulation for singular Sturm–Liouville problems nonlinear in the spectral parameter,” J. Differ. Equations 159 (2), 515–542 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Mennicken, H. Schmid, and A. A. Shkalikov, “On the eigenvalue accumulation of Sturm–Liouville problems depending nonlinearly on the spectral parameter,” Math. Nachr. 189 (1), 157–170 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Yu. Reutskiy, “The method of external excitation for solving generalized Sturm–Liouville problems,” J. Comput. Appl. Math. 233 (9) 2374–2386 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. A. Abramov, “A modification of one method for solving nonlinear self-adjoint eigenvalue problems for Hamiltonian systems of ordinary differential equations,” Comput. Math. Math. Phys. 51 (1), 35–39 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. A. Abramov and L. F. Yukhno, “A nonlinear singular eigenvalue problem for a Hamiltonian system of differential equations with redundant condition,” Comput. Math. Math. Phys. 55 (4), 597–606 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Ghelardoni, G. Gheri, and M. Marletta, “Spectral corrections for Sturm–Liouville problems,” J. Comput. Appl. Math. 132, 443–459 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  23. L. D. Akulenko and S. V. Nesterov, “Mass defect influence on the longitudinal vibration frequencies and mode shapes of a beam,” Mech. Solids 49 (1), 104–111 (2014).

    Article  Google Scholar 

  24. V. A. Kalinichenko, S. V. Nesterov, and A. N. So, “Faraday waves in a rectangular reservoir with local bottom irregularities,” Fluid Dyn. 50 (4), 535–542 (2015).

    Article  MATH  Google Scholar 

  25. M. A. Naimark, Linear Differential Operators (Ungar, New York, 1967; Nauka, Moscow, 1969).

    MATH  Google Scholar 

  26. A. A. Abramov, “Calculation of eigenvalues in a nonlinear spectral problem for the Hamiltonian systems of ordinary differential equations,” Comput. Math. Math. Phys. 41 (1), 27–36 (2001).

    MathSciNet  MATH  Google Scholar 

  27. H. I. Dwyer and A. Zettl, “Eigenvalue computations for regular matrix Sturm–Liouville problems,” Electr. J. Differ. Equations 1995 (5), 1–13 (1995).

    MathSciNet  MATH  Google Scholar 

  28. L. Greenberg and M. Marletta, “Numerical solution of non-self-adjoint Sturm–Liouville problems and related systems,” SIAM J. Numer. Anal. 38 (6), 1800–1845 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  29. I. G. Malkin, Certain Problems in the Theory of Nonlinear Oscillations (GITTL, Moscow, 1956) [in Russian].

    MATH  Google Scholar 

  30. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1959), Vol. 2.

    MATH  Google Scholar 

  31. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover, New York, 1999; Fizmatlit, Moscow, 2004).

    MATH  Google Scholar 

  32. L. Collatz, Funktionalanalysis und numerische Mathematik (Springer-Verlag, Berlin, 1964; Mir, Moscow, 1969).

    Book  MATH  Google Scholar 

  33. L. D. Akulenko, “On stationary oscillations and rotations,” Ukr. Mat. Zh. 18 (5), 7–18 (1966).

    Article  Google Scholar 

  34. GSL-GNU Scientific Library. http://www.gnu.org/software/gsl/.

  35. J. Burkardt, RKF45: Runge–Kutta–Fehlberg ODE Solver. http://people.sc.fsu.edu/~jburkardt/c_src/rkf45/rkf45.html.

  36. L. Collatz, Eigenwertaufgaben mit technischen Anwendungen (Geest & Portig, Leipzig, 1963; Nauka, Moscow, 1968).

    MATH  Google Scholar 

  37. J. W. Strutt (Lord Rayleigh), The Theory of Sound (Macmillan, London, 1894; Gostekhizdat, Moscow, 1955), Vol. 1.

    MATH  Google Scholar 

  38. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Cambridge Univ. Press, Cambridge, 1927; ONTI, Moscow, 1935).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Akulenko.

Additional information

Original Russian Text © L.D. Akulenko, A.A. Gavrikov, S.V. Nesterov, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 9, pp. 1503–1516.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akulenko, L.D., Gavrikov, A.A. & Nesterov, S.V. Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter. Comput. Math. and Math. Phys. 57, 1484–1497 (2017). https://doi.org/10.1134/S0965542517090020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517090020

Keywords

Navigation