Advertisement

Open waveguides in a thin Dirichlet ladder: I. Asymptotic structure of the spectrum

  • S. A. NazarovEmail author
Article

Abstract

The spectra of open angular waveguides obtained by thickening or thinning the links of a thin square lattice of quantum waveguides (the Dirichlet problem for the Helmholtz equation) are investigated. Asymptotics of spectral bands and spectral gaps (i.e., zones of wave transmission and wave stopping, respectively) for waveguides with variously shaped periodicity cells are found. It is shown that there exist eigenfunctions of two types: localized around nodes of a waveguide and on its links. Points of the discrete spectrum of a perturbed lattice with eigenfunctions concentrated about corners of the waveguide are found.

Keywords

square lattice of quantum waveguides open waveguides spectrum asymptotics spectral gaps trapped modes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.-S. Bonnet-Bendhia and F. Starling, “Guided waves by electromagnetic gratings and nonuniqueness examples for the diffraction problem,” Math. Meth. Appl. Sci. 17, 305–338 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain,” in Sobolev Spaces in Mathematics, Vol. 2, Ed. by V. Maz’ya (Springer, New York, 2008), pp. 261–309.Google Scholar
  3. 3.
    I. M. Gel’fand, “Eigenfunction expansion for an equation with periodic coefficients,” Dokl. Akad. Nauk SSSR 73, 1117–1120 (1950).Google Scholar
  4. 4.
    P. A. Kuchment, “Floquet theory for partial differential equations,” Russ. Math. Surv. 37 (4), 1–60 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators,” Proc. Steklov Inst. Math. 171 (2), 1–121 (1987).MathSciNetzbMATHGoogle Scholar
  6. 6.
    S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter, Berlin, 1994).CrossRefzbMATHGoogle Scholar
  7. 7.
    P. Kuchment, Floquet Theory for Partial Differential Equations (Birkhäuser, Basel, 1993).CrossRefzbMATHGoogle Scholar
  8. 8.
    A.-S. Bonnet-Ben Dhia, G. Dakhia, C. Hazard, and L. Chorfi, “Diffraction by a defect in an open waveguide: A mathematical analysis based on a modal radiation condition,” SIAM J. Appl. Math. 70 (3), 677–693 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A.-S. Bonnet-Ben Dhia, B. Goursaud, and C. Hazard, “Mathematical analysis of the junction of two acoustic open waveguides,” SIAM J. Appl. Math. 71 (6), 2048–2071 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    G. Cardone, S. A. Nazarov, and J. Taskinen, “Spectra of open waveguides in periodic media,” J. Funct. Anal. 269 (8), 2328–2364 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J. P. Carini, J. T. Londergan, and D. P. Murdock, Binding and Scattering in Two-Dimensional Systems: Applications to Quantum Wires, Waveguides, and Photonic Crystals (Springer-Verlag, Berlin, 1999).zbMATHGoogle Scholar
  12. 12.
    S. A. Nazarov, “Discrete spectrum of cross-shaped quantum waveguides,” in Problems in Mathematical Analysis (Novosibirsk, 2013), Vol. 73, pp. 101–127 [in Russian].Google Scholar
  13. 13.
    S. A. Nazarov, Discrete spectrum of cranked, branching, and periodic waveguides," St. Petersburg Math. J. 23 (2), 351–379 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    S. A. Nazarov and A. V. Shanin, “Trapped modes in angular joints of 2D waveguides,” Appl. Anal. 93 (3), 572–582 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    S. A. Nazarov, “The spectrum of rectangular gratings of quantum waveguides,” Izv. Ross. Akad. Nauk, Ser. Mat. 81 (1) (2017) (in press).Google Scholar
  16. 16.
    D. Grieser, “Spectra of graph neighborhoods and scattering,” Proc. London Math. Soc. 97 (3), 718–752 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    S. A. Nazarov, “On the spectrum of an infinite Dirichlet ladder,” St. Petersburg Math. J. 23, 1023–1045 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Sh. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space (Leningr. Gos. Univ., Leningrad, 1980; Reidel, Dordrecht, 1987).Google Scholar
  19. 19.
    S. A. Nazarov, “Elliptic boundary value problems with periodic coefficients in a cylinder,” Izv. Akad. Nauk SSSR, Ser. Mat. 45 (1), 101–112 (1981).MathSciNetzbMATHGoogle Scholar
  20. 20.
    S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold,” Sib. Math. J. 51 (5), 866–878 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    S. A. Nazarov, “Trapped modes in a T-shaped waveguide,” Acoust. Phys. 56 (6), 1004–1015 (2010).CrossRefGoogle Scholar
  22. 22.
    S. A. Nazarov, “Asymptotics of eigenvalues of the Dirichlet problem in a skewed T-shaped waveguide,” Comput. Math. Math. Phys. 54 (5), 811–830 (2014).MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. I. Vishik and L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter,” Usp. Mat. Nauk 12 (5), 3–122 (1957).MathSciNetzbMATHGoogle Scholar
  24. 24.
    S. A. Nazarov, “Structure of the spectrum of a net of quantum waveguides and bounded solutions of a model problem at the threshold,” Dokl. Math. 90 (2), 637–641 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    S. A. Nazarov, “Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder,” Comput. Math. Math. Phys. 54 (8), 1261–1279 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    S. A. Nazarov, “Localization of elastic oscillations in cross-shaped planar orthotropic waveguides,” Phys.-Dokl. 59 (9), 411–415 (2014).CrossRefGoogle Scholar
  27. 27.
    M. D. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic, New York, 1964; Mir, Moscow, 1967).zbMATHGoogle Scholar
  28. 28.
    A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Nauka, Moscow, 1989; Am. Math. Soc., RI, Providence, 1992).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  3. 3.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations