Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder

  • S. A. NazarovEmail author


The Dirichlet problem is considered on the junction of thin quantum waveguides (of thickness h ≪ 1) in the shape of an infinite two-dimensional ladder. Passage to the limit as h → +0 is discussed. It is shown that the asymptotically correct transmission conditions at nodes of the corresponding one-dimensional quantum graph are Dirichlet conditions rather than the conventional Kirchhoff transmission conditions. The result is obtained by analyzing bounded solutions of a problem in the T-shaped waveguide that the boundary layer phenomenon.


lattice of quantum waveguides Dirichlet spectral problem quantum graph Kirchhoff transmission conditions Dirichlet condition cross-shaped waveguide bounded solutions at threshold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Sh. Birman and G. E. Skvortsov, “On square summability of highest derivatives of the solution of the Dirichlet problem in a domain with piecewise smooth boundary,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 5, 11–21 (1962).Google Scholar
  2. 2.
    S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter, New York, 1994).CrossRefzbMATHGoogle Scholar
  3. 3.
    S. A. Nazarov, “Trapped modes in a T-shaped waveguide,” Acoust. Phys. 56, 1004–1015 (2010).CrossRefGoogle Scholar
  4. 4.
    S. A. Nazarov and A. V. Shanin, “Calculation of characteristics of trapped modes in T-shaped waveguides,” Comput. Math. Math. Phys. 51, 96–110 (2011).CrossRefMathSciNetGoogle Scholar
  5. 5.
    P. Kuchment, “Graph models for waves in thin structures,” Waves Random Media 12(12), R1–R12 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    P. Kuchment and O. Post, “On the spectrum of carbon nanostructures,” Commun. Math. Phys. 275, 805–826 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Quantum graphs and their applications, Ed. by P. Kuchment, special issue of Waves Random Media 14(1) (2004).Google Scholar
  8. 8.
    D. Grieser, “Spectra of graph neighborhoods and scattering,” Proc. London Math. Soc. 97, 718–752 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    S. A. Nazarov, “Two-term asymptotics of solutions of spectral problems with singular perturbations,” Math. USSR-Sb. 69, 307–340 (1991).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    S. A. Nazarov, “Asymptotic analysis and modeling of the junction of a massive body with thin rods,” J. Math. Sci. 127, 2172–2263 (2003).Google Scholar
  11. 11.
    S. A. Nazarov, “Estimates for the accuracy of modeling boundary-value problems at the junction of domains with different limit dimensions,” Izv. Math. 68, 1179–1215 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    S. A. Nazarov, “On the spectrum of an infinite Dirichlet ladder,” St. Petersburg Math. J. 23, 1023–1045 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    S. A. Nazarov and B. A. Plamenevskii, “Radiation principles for self-adjoint elliptic problems,” Probl. Mat. Fiz. Leningr. Gos. Univ. 13, 192–244 (1991).MathSciNetGoogle Scholar
  14. 14.
    N. A. Umov, Equations of Energy Transfer in Bodies (Tipogr. Ul’rikha i Shul’tse, Odessa, 1874) [in Russian].Google Scholar
  15. 15.
    J. H. Poynting, “On the transfer of energy in the electromagnetic field,” Phil. Trans. R. Soc. London 175, 343–361 (1884).CrossRefzbMATHGoogle Scholar
  16. 16.
    L. I. Mandelstam, Lectures on Optics, Relativity Theory, and Quantum Mechanics (Akad. Nauk SSSR, Moscow, 1947), Vol. 2 [in Russian].Google Scholar
  17. 17.
    I. I. Vorovich and V. A. Babeshko, Mixed Dynamic Problems of Elasticity Theory for Nonclassical Domains (Nauka, Moscow, 1979) [in Russian].zbMATHGoogle Scholar
  18. 18.
    S. A. Nazarov, “The Mandelstam energy radiation conditions and the Umov-Poynting vector in elastic waveguides,” J. Math. Sci. 195, 676–729 (2013).CrossRefMathSciNetGoogle Scholar
  19. 19.
    S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes,” Russ. Math. Surv. 54, 947–1014 (1999).CrossRefzbMATHGoogle Scholar
  20. 20.
    S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide,” Theor. Math. Phys. 167, 606–627 (2011).CrossRefzbMATHGoogle Scholar
  21. 21.
    R. Leis, Initial Boundary Value Problems of Mathematical Physics (Teubner, Stuttgart, 1986).CrossRefGoogle Scholar
  22. 22.
    M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in Hilbert Space (Leningr. Gos. Univ., Leningrad, 1980; Reidel, New York, 1986).Google Scholar
  23. 23.
    M. D. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic, New York, 1964; Mir, Moscow, 1967).zbMATHGoogle Scholar
  24. 24.
    A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Nauka, Moscow, 1989; Am. Math. Soc., RI, Providence, 1992).zbMATHGoogle Scholar
  25. 25.
    S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold,” Sib. Math. J. 51, 866–878 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide,” J. Funct. Anal. 47, 195–209 (2013).CrossRefGoogle Scholar
  27. 27.
    V. V. Grushin, “On the eigenvalues of finitely perturbed Laplace operators in infinite cylindrical domains,” Math. Notes 75, 331–340 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    R. R. Gadyl’shin, “Local perturbations of quantum waveguides,” Theor. Math. Phys. 145, 1678–1690 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    S. A. Nazarov, Asymptotic Theory of Plates and Rods: Dimension Reduction and Integral Estimates (Nauchnaya Kniga, Novosibirsk, 2002) [in Russian].Google Scholar
  30. 30.
    P. A. Kuchment, “Floquet theory for partial differential equations,” Russ. Math. Surv. 37(4), 1–60 (1982).CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    P. Kuchment, Floquet Theory for Partial Differential Equations (Birkhäuser, Basel, 1993).CrossRefzbMATHGoogle Scholar
  32. 32.
    I. M. Gel’fand, “Eigenfunction Expansion for an Equation with Periodic Coefficients,” Dokl. Akad. Nauk SSSR 73, 1117–1120 (1950).zbMATHGoogle Scholar
  33. 33.
    J.-L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications (Mir, Moscow, 1971; Springer-Verlag, Berlin 1972).Google Scholar
  34. 34.
    M. I. Vishik and L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter,” Usp. Mat. Nauk 12(5), 3–122 (1957).zbMATHMathSciNetGoogle Scholar
  35. 35.
    S. A. Nazarov, “The spatial structure of the stress field in the neighborhood of the corner point of a thin plate,” J. Appl. Math. Mech. 55, 523–530 (1991).CrossRefMathSciNetGoogle Scholar
  36. 36.
    S. A. Nazarov, “Asymptotics of solutions and modeling the problems of elasticity theory in domains with rapidly oscillating boundaries,” Izv. Math. 72, 509–564 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    P. Kuchment and H. Zeng, “Asymptotics of spectra of Neumann Laplacians in thin domains,” Contemp. Math. Am. Math. Soc. 387, 199–213 (2003).CrossRefMathSciNetGoogle Scholar
  38. 38.
    S. A. Nazarov, “A general scheme for averaging self-adjoint elliptic systems in multidimensional domains, including thin domains,” St. Petersburg Math. J. 7, 681–748 (1996).MathSciNetGoogle Scholar
  39. 39.
    S. A. Nazarov, “Asymptotics of eigenvalues of the Dirichlet problem in a skewed J-shaped waveguide,” Comput. Math. Math. Phys. 54, 811–830 (2014).CrossRefMathSciNetGoogle Scholar
  40. 40.
    D. S. Jones, “The eigenvalues of ∇2 u + λu = 0 when the boundary conditions are given on semi-infinite domains,” Proc. Cambridge Phil. Soc. 49, 668–684 (1953).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.St. Petersburg State UniversityStaryi Peterhof, St. PetersburgRussia

Personalised recommendations