Computational Mathematics and Mathematical Physics

, Volume 54, Issue 10, pp 1522–1535 | Cite as

Multioperator representation of composite compact schemes

Article

Abstract

The multioperator approach is used to obtain high-order accurate compact differences. These differences are developed to describe convective terms of differential equations, as well as mixed derivatives, source terms, and the coefficients of metric derivatives of coordinate transformations. The same principles are used to obtain high-order compact differences for representing diffusion terms. These differences underlie multioperator composite compact schemes, which are used to compute the flow past an airfoil by integrating the nonstationary Navier-Stokes equations supplemented with the equations of a turbulent viscosity model.

Keywords

high-order compact schemes multioperator approach property of difference operators numerical simulation turbulent viscous gas flows sound radiation of airfoil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Tolstykh, “A numerical method for the compressible Navier-Stokes equations for a wide range of Reynolds numbers,” Dokl. Akad. Nauk SSSR 210(1), 48–51 (1973).MathSciNetGoogle Scholar
  2. 2.
    A. I. Tolstykh, High Accuracy Noncentered Compact Schemes for Fluid Dynamics Applications (World Scientific, Singapore, 1994).Google Scholar
  3. 3.
    S. K. Lele, “Compact finite difference schemes with spectral-like resolution,” J. Comput. Phys. 102, 16–42 (1992).MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Lele, S. K. Lele, and P. Moin, “Direct numerical simulation of isotropic turbulence interacting with a shock wave,” J. Fluid Mech. 251, 533–562 (1993).CrossRefGoogle Scholar
  5. 5.
    M. R. Visbal and D. V. Gaitonde, “On the use of high-order finite-difference schemes on curvilinear and deforming meshes,” J. Comput. Phys. 181, 155–185 (2002).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    H. C. Yee, N. D. Sandham, and M. J. Djomehri, “Low-dissipative high-order shock-capturing methods using characteristic-based filters,” J. Comput. Phys. 150, 199–238 (1999).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    A. I. Tolstykh, “Multioperator schemes of arbitrary order based on noncentered compact approximations,” Dokl. Math. 59, 409–412 (1999).Google Scholar
  8. 8.
    A. I. Tolstykh, “Construction of schemes of prescribed order of accuracy with linear combinations of operators,” Comput. Math. Math. Phys. 40, 1159–1172 (2000).MathSciNetMATHGoogle Scholar
  9. 9.
    M. V. Lipavskii, A. I. Tolstykh, and E. N. Chigerev, “Numerical simulation of shear layer instability using a scheme with ninth-order multioperator approximations,” Comput. Math. Math. Phys. 53, 296–310 (2013).MathSciNetCrossRefGoogle Scholar
  10. 10.
    T. H. Pulliam, “Artificial dissipation models for the Euler equations,” AIAA J. 24(12), 1931–1940 (1986).CrossRefMATHGoogle Scholar
  11. 11.
    A. D. Savel’ev, “High-order composite compact schemes for simulation of viscous gas flows,” Comput. Math. Math. Phys. 47, 1332–1346 (2007).MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. D. Savel’ev, “Applications of high order difference operators in numerical simulation of aerodynamic problems,” Math. Model. Comput. Simul. 4, 541–551 (2012).CrossRefGoogle Scholar
  13. 13.
    A. D. Savel’ev, “On the structure of internal dissipation of composite compact schemes for gasdynamic simulation,” Comput. Math. Math. Phys. 49, 2135–2148 (2009).MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. I. Tolstykh, “On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order,” Comput. Math. Math. Phys. 51, 51–67 (2011).MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. I. Tolstykh, “Development of arbitrary-order multioperators-based schemes for parallel calculations: 1. Higher-than-fifth-order approximations to convection terms,” J. Comput. Phys. 225, 2333–2353 (2007).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    A. V. Zaitsev and V. N. Kudashov, “Exact solutions of the viscous fluid dynamics equation in a channel,” Kholodil. Tekh. Konditsion., No. 2, 11–14 (2012).Google Scholar
  17. 17.
    D. C. Wilcox, “Reassessment of the scale-determining equation for advanced turbulence models,” AIAA J. 22(8), 1139–1145 (1984).CrossRefGoogle Scholar
  18. 18.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1987; Begell House, New York, 1996).Google Scholar
  19. 19.
    P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AIAA Paper, 92-0439 (1992).Google Scholar
  20. 20.
    A. D. Savel’ev, “Computations of viscous gas flows based on the q — ν turbulence model,” Comput. Math. Math. Phys. 43, 564–574 (2003).MathSciNetGoogle Scholar
  21. 21.
    O. Marsden, C. Bogey, and C. Bailly, “High-order curvilinear simulations of flows around non-Cartesian bodies,” J. Comput. Acoustics 13(4), 731–748 (2005).CrossRefMATHGoogle Scholar
  22. 22.
    W. Z. Shen, J. A. Michelsen, and J. N. Sorensen, “A collocated grid finite volume method for aeroacoustic computations of low-speed flows,” J. Comput. Phys. 196, 348–366 (2004).CrossRefMATHGoogle Scholar
  23. 23.
    C. K. W. Tam and H. Ju, “Numerical simulation of the generation of airfoil tones at a moderate Reynolds number,” AIAA Paper, 2006-2502 (2006).Google Scholar
  24. 24.
    U. Michel, D. Eschricht, B. Grechner, et al., “Simulation of the sound radiation of turbulent flows with DES,” West-East High Speed Flow Field Conference, November 19–22, 2007 (Moscow, 2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Dorodnicyn Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations