Application of the multipole method to direct and inverse problems for the Grad-Shafranov equation with a nonlocal condition

  • S. I. Bezrodnykh
  • V. I. Vlasov


Two homogeneous Dirichlet problems for the Grad-Shafranov equation with an affine right-hand side are considered in plane simply connected domains with a piecewise smooth boundary. The problems are denoted by and \((\mathfrak{D})\), and \((\mathfrak{A})\) the second involves a nonlocal condition. The corresponding inverse problems \((\mathfrak{D}^{ - 1} )\) and \((\mathfrak{A}^{ - 1} )\) of finding unknown parameters on the right-hand side of the equation from a given normal derivative of the solution to the respective direct problem are also considered. These problems arise in the computation of plasma flow characteristics in a tokamak. It is shown that the sought parameters can be found from two given quantities: (i) the normal derivative in the corresponding direct problem, which is physically interpreted as the magnetic field at an arbitrary single point \(\tilde x\) of a special subset \(\tilde \Gamma \) of the boundary Γ, and (ii) the integral of the normal derivative over Γ, which is physically interpreted as the total current through the tokamak cross section. Both problems are shown to be uniquely solvable, and necessary and sufficient conditions for unique solvability are given. A method for finding the desired parameters is proposed, which includes a technique for finding the subset \(\tilde \Gamma \). The results are based, first, on the multipole method, which ensures the high-order accurate computation of the normal derivatives of the solution to direct problems \((\mathfrak{D})\) and \((\mathfrak{A})\), and, second, on the asymptotics of these derivatives as one of the parameters on the right-hand side of the equation tends to infinity.


Grad-Shafranov equation inverse problem nonlocal condition tokamak magnetic field computation multipole method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. E. Tamm and A. D. Sakharov, Plasma Physics and Controlled Thermonuclear Fusion (Akad. Nauk SSSR, Moscow, 1958), Vol. 1 [in Russian].Google Scholar
  2. 2.
    L. A. Artsimovich, Controlled Thermonuclear Reactions, Ed. by A. Kolb and R. S. Pease (Fizmatgiz, Moscow, 1963; Gordon and Breach, New York, 1964).Google Scholar
  3. 3.
    S. V. Mirnov, Physical Processes in Tokamak Plasma (Energoatomizdat, Moscow, 1985) [in Russian].Google Scholar
  4. 4.
    R. B. White, Theory of Tokamak Plasmas (North-Holland, Amsterdam, 1989).Google Scholar
  5. 5.
    J. Blum, Numerical Simulation and Optimal Control in Plasma Physics (Wiley, New York, 1989).zbMATHGoogle Scholar
  6. 6.
    ITER Documentation Series (IAEA, Vienna, 1990), Vol. 1.Google Scholar
  7. 7.
    Yu. N. Dnestrovskii and D. P. Kostomarov, Mathematical Modeling of Plasmas (Nauka, Moscow, 1993) [in Russian].Google Scholar
  8. 8.
    R. Aymar, P. Barabaschi, and Y. Shimomura, “The ITER design,” Plasma Phys. Control. Fusion 44, 519–565 (2002).CrossRefGoogle Scholar
  9. 9.
    V. D. Shafranov, “On equilibrium magnetohydrodynamic configurations,” Terzo Congresso Internazionale Sui Fenomeni D’ionizzazione Nei Gas, tenuto a Venezia dall’11 al 15 giugno (Milano, 1957), pp. 990–997.Google Scholar
  10. 10.
    V. D. Shafranov, “On equilibrium magnetohydrodynamic configurations,” Zh. Eksp. Teor. Phys. 33, 710–722 (1957).Google Scholar
  11. 11.
    H. Grad and H. Rubin, “Hydromagnetic equilibria and force-free fields,” Proceedings of the 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958 (Columbia Univ. Press, New York, 1959), Vol. 31, pp. 190.Google Scholar
  12. 12.
    V. D. Shafranov, “Plasma equilibrium in magnetic field,” in Problems in Plasma Theory (Gosatomizdat, Moscow, 1963), Vol. 2, pp. 92–131 [In Russian].Google Scholar
  13. 13.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).Google Scholar
  14. 14.
    S. I. Syrovatskii, “Magnetohydrodynamics,” Usp. Fiz. Nauk 62, 247–290 (1957).CrossRefGoogle Scholar
  15. 15.
    A. G. Kulikovskii and G. A. Lyubimov, Magnetohydrodynamics (Fizmatgiz, Moscow, 1962; Addison-Wesley, Reading, Mass., 1965).Google Scholar
  16. 16.
    R. V. Polovin and V. P. Demutskii, Fundamentals of Magnetohydrodynamics (Energoatomizdat, Moscow, 1987) [in Russian].Google Scholar
  17. 17.
    A. I. Morozov, Introduction to Plasma Dynamics (Fizmatlit, Moscow, 2006; CRC, Boca Raton, 2012).Google Scholar
  18. 18.
    K. V. Brushlinskii, Mathematical and Computational Problems in Magnetohydrodynamics (BINOM, Moscow, 2009) [in Russian].Google Scholar
  19. 19.
    M. Vogelius, “An inverse problem for the equation Δu = −cud,” Ann. Inst. Fourier 44, 1181–1204 (1994).CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    A. S. Demidov, “On the inverse problem for the Grad-Shafranov equation with affine right-hand side,” Russ. Math. Surv. 55, 1141–1142 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    R. Dalmasso, “An inverse problem for the elliptic equation with an affine form,” Math. Ann. 316, 771–792 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    A. Demidov, “On the inverse problem for the Grad-Shafranov equation with affine right-hand side,” Abstracts of the 2nd Conference on Inverse Problems, Control, and Shape Optimization, Carthage, Tunisia, April 10–12, 2002, pp. 93–94.Google Scholar
  23. 23.
    A. S. Demidov and M. Moussaoui, “An inverse problem originating from magnetohydrodynamics,” Inverse Probl. 20, 137–154 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    A. S. Demidov, A. S. Kochurov, and A. Yu. Popov, “To the problem of the recovery of nonlinearities in equations of mathematical physics,” J. Math. Sci. 163(1), 46–77 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    A. S. Demidov, “Functional geometric method for solving free boundary problems for harmonic functions,” Russ. Math. Surv. 65(1), 1–94 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    A. S. Demidov and L. E. Zakharov, “Direct and inverse problems in the theory of plasma equilibrium,” Usp. Mat. Nauk 29(6), 203 (1974).Google Scholar
  27. 27.
    A. S. Demidov, V. V. Petrova, and V. M. Silantiev, “On inverse and direct free boundary problems in the theory of plasma equilibrium in a tokamak,” C.R. Acad. Sci. Paris, Ser. I 323, 353–358 (1996).zbMATHMathSciNetGoogle Scholar
  28. 28.
    J. Blum and H. Buvat, “An inverse problem in plasma physics: The identification of the current density profile in a tokamak,” Large-Scale Optimization with Applications, IMA Volumes in Mathematics and Its Applications, Vol. 92 (Springer-Verlag, Berlin, 1997), pp. 17–36.CrossRefGoogle Scholar
  29. 29.
    V. D. Pustovitov, “Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems,” Nucl. Fusion 41, 721–730 (2001).CrossRefGoogle Scholar
  30. 30.
    E. Beretta and M. Vogelius, “An inverse problem originating from magnetohydrodynamics,” Arch. Rat. Mech. Anal. 115, 137–152 (1991).CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    E. Beretta and M. Vogelius, “An inverse problem originating from magnetohydrodynamics: II. The case of the Grad-Shafranov equation,” Indiana Univ. Math. J. 41, 1081–1118 (1992).CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    E. Beretta and M. Vogelius, “An inverse problem originating from magnetohydrodynamics: III. Domains with corners of arbitrary angles,” Asymptotic Anal. 11, 289–315 (1995).zbMATHMathSciNetGoogle Scholar
  33. 33.
    Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdelyi (McGraw-Hill, New York, 1953; Nauka, Moscow, 1974), Vol. 2.Google Scholar
  34. 34.
    S. I. Bezrodnykh, V. I. Vlasov, and A. S. Demidov, “Application of multipole method to the model plasma equilibrium problem,” Abstracts of the Conference “Youth in Science” (Sarov, 2007), p. 8.Google Scholar
  35. 35.
    O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations (Nauka, Moscow, 1964; Academic, New York, 1987).zbMATHGoogle Scholar
  36. 36.
    R. Adams, Sobolev Spaces (Academic, New York, 1975).zbMATHGoogle Scholar
  37. 37.
    L. N. Slobodetskii, “Generalized Sobolev spaces and their applications to boundary value problems for partial differential equations,” Uchen. Zap. Leningr. Gos. Ped. Inst. 197, 54–112 (1958).Google Scholar
  38. 38.
    V. I. Burenkov, Sobolev Spaces on Domains (Teubner, Stuttgart, 1998).CrossRefzbMATHGoogle Scholar
  39. 39.
    E. M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton Univ. Press, Princeton, 1970; Mir, Moscow, 1973).zbMATHGoogle Scholar
  40. 40.
    V. P. Mikhailov, Partial Differential Equations (Nauka, Moscow, 1976; Nauka, Moscow, 1983).Google Scholar
  41. 41.
    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer-Verlag, Berlin, 1983; Nauka, Moscow, 1989).CrossRefzbMATHGoogle Scholar
  42. 42.
    P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, 1985).zbMATHGoogle Scholar
  43. 43.
    L. Nirenberg, “Remarks on strongly elliptic partial differential equations,” Commun. Appl. Math. 8, 648–674 (1955).CrossRefGoogle Scholar
  44. 44.
    F. E. Browder, “On regularity properties of solutions of elliptic differential equations,” Commun. Pure Appl. Math. 9, 351–361 (1956).CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    J. L. Lions, Lectures on Elliptic Differential Equations (Tata Inst. of Fundamental Research, Bombay, 1957).Google Scholar
  46. 46.
    M. Schechter, “General boundary value problems for elliptic partial differential equations,” Commun. Pure Appl. Math. 12, 457–486 (1959).CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    S. Agmon, “The approach to the Dirichlet problem,” Ann. Scuola Norm. Sup. Pisa 13(3), 49–92 (1959).MathSciNetGoogle Scholar
  48. 48.
    J. Peetre, Théorèms de régularite pour quelques classes d’opérateurs différentiells (Thesis, Lund, 1959).Google Scholar
  49. 49.
    L. Bers, F. John, and M. Schechter, Partial Differential Equations (Wiley, New York, 1964; Mir, Moscow, 1966).zbMATHGoogle Scholar
  50. 50.
    S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Nauka, Moscow, 1991; Walter de Gruyter, Berlin, 1994).Google Scholar
  51. 51.
    Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdelyi (McGraw-Hill, New York, 1953; Nauka, Moscow, 1973), Vol. 1.Google Scholar
  52. 52.
    C. Miranda, “Partial Differential Equations of Elliptic Type” (Inostrannaya Literatura, Moscow, 1957; Springer-Verlag, New York, 1970).Google Scholar
  53. 53.
    E. Hopf, “Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordung vom elliptischen Typus,” Sitzungsberichte Preuss. Akad. Wissensch. Berlin, Math. Phys. 19, 147–152 (1927).Google Scholar
  54. 54.
    G. Giraud, “Fr Généralisation des problémes sur les opérations du type elliptique,” Bull. Soc. Math. 56, 316–352 (1932).Google Scholar
  55. 55.
    G. Giraud, “Problémes de valeurs á la frontiére relatifs á certaines données discontinues,” Bull. Soc. Math. France 61, 1–54 (1933).MathSciNetGoogle Scholar
  56. 56.
    E. Hopf, “A remark on linear elliptic differential equations of second order,” Proc. Am. Math. Soc. 3, 791–793 (1952).CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    O. A. Oleinik, “On properties of solutions of certain problems for elliptic equations,” Mat. Sb. 30, 695–702 (1952).MathSciNetGoogle Scholar
  58. 58.
    N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Differential Equations of Mathematical Physics (North-Holland, Amsterdam, 1964; Vysshaya Shkola, Moscow, 1970).zbMATHGoogle Scholar
  59. 59.
    I. P. Natanson, Theory of Functions of a Real Variable (Ungar, New York, 1955; Nauka, Moscow, 1974).Google Scholar
  60. 60.
    I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Non-Self-Adjoint Operators (Moscow, Nauka, 1965; Am. Math. Soc., Providence, R.I., 1969).Google Scholar
  61. 61.
    N. Dunford and J. T. Schwartz, Linear Operators, Part 2: Spectral Theory (Interscience, New York, 1963; Mir, Moscow, 1966).Google Scholar
  62. 62.
    L. Hörmander, The Analysis of Linear Partial Differential Operators (Springer-Verlag, Berlin, 1983–1985), Vols. 1–4.CrossRefGoogle Scholar
  63. 63.
    M. S. Agranovich, “Elliptic operators on closed manifold,” in Modern Problems in Mathematics: Fundamental Directions (VINITI, Moscow, 1990), Vol. 63, pp. 5–129 [in Russian].Google Scholar
  64. 64.
    N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Nauka, Moscow, 1987) [in Russian].zbMATHGoogle Scholar
  65. 65.
    V. I. Vlasov, Multipole Method, Technical Report (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1976).Google Scholar
  66. 66.
    V. I. Vlasov, “Solution of the Dirichlet problem using Fourier series expansion,” Dokl. Akad. Nauk SSSR 249, 19–22 (1979).MathSciNetGoogle Scholar
  67. 67.
    V. I. Vlasov, Boundary Value Problems in Domains with Curved Boundaries (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1987) [in Russian].Google Scholar
  68. 68.
    V. I. Vlasov, “A method for solving some plane mixed problems for Laplace’s equation,” Dokl. Akad. Nauk SSSR 237, 1012–1015 (1977).MathSciNetGoogle Scholar
  69. 69.
    V. I. Vlasov, “Multipole method for solving some boundary value problems in complex-shaped domains,” Z. Angew. Math. Mech. 76(Suppl. 1), 279–282 (1996).zbMATHMathSciNetGoogle Scholar
  70. 70.
    V. I. Smirnov, “Sur la théorie des polynomes orthogonaux á la variable complex,” Zh. Leningrad. Fiz.-Mat. O-va 2(1), 155–179 (1928).Google Scholar
  71. 71.
    M. V. Keldysh and M. A. Lavrentieff, “Sur la representation conform des domaines limitès par les courbes rectifiables,” Ann. Ecole Norm. Super. 54(3), 1–38 (1937).zbMATHMathSciNetGoogle Scholar
  72. 72.
    G. Cimmino, “Nuovo tipo di condizione al contorno e nuovo metodo di trattazione per il problema generalizzato di Dirichlet,” Rend. Circ. Mat. Palermo 61, 177–221 (1938).CrossRefGoogle Scholar
  73. 73.
    I. I. Privalov, Boundary Properties of Analytic Functions (Gostekhizdat, Moscow, 1950) [in Russian].Google Scholar
  74. 74.
    G. M. Goluzin, Geometric Theory of Functions of a Complex Variable (Am. Math. Soc., Providence, R.I., 1969; Nauka, Moscow, 1966).zbMATHGoogle Scholar
  75. 75.
    V. G. Maz’ya, “On a degenerating problem with directional derivative,” Math. USSR Sb. 16, 429–469 (1972).CrossRefzbMATHGoogle Scholar
  76. 76.
    A. K. Gushchin and V. P. Mikhailov, “On boundary values in L p, p > 1, of solutions of elliptic equations,” Math. USSR Sb. 36(1), 1–19 (1979).Google Scholar
  77. 77.
    V. I. Vlasov, Doctoral Dissertation in Mathematics and Physics (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1990).Google Scholar
  78. 78.
    L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1977; Pergamon, Oxford, 1982).Google Scholar
  79. 79.
    S. G. Mikhlin, Numerical Implementation of Variational Methods (Nauka, Moscow, 1966) [in Russian].Google Scholar
  80. 80.
    L. Fox, P. Henrici, and C. Moler, “Approximations and bounds for eigenvalues of elliptic operators,” SIAM J. Numer. Anal. 4(1), 89–102 (1967).CrossRefzbMATHMathSciNetGoogle Scholar
  81. 81.
    V. I. Vlasov, “A method for solving boundary value problems for the Laplace equation in domains with cones,” Dokl. Akad. Nauk 70, 599–602 (2004).Google Scholar
  82. 82.
    S. L. Skorokhodov and V. I. Vlasov, “The multipole method for the Laplace Equation in domains with polyhedral corners,” Comput. Assist. Mech. Eng. Sci. 11, 223–238 (2004).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Dorodnicyn Computing CenterRussian Academy of SciencesMoscowRussia
  2. 2.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia

Personalised recommendations