Roll waves in an annular channel

Article

Abstract

The goal of this study is to analytically construct periodic wind perturbations in an annular channel that are numerically produced by a regularized model. R. Dressler’s technique in the shallow water approximation is used to prove the nonexistence of smooth periodic solutions, and discontinuous solutions related to roll waves on inclined surfaces are constructed. The constraints on the accelerating and dissipating forces are obtained under which periodic solutions can exist. A numerical analysis of the problem is carried out, and a qualitative comparison of the numerical and theoretical results is presented.

Keywords

annular channel shallow water equations solitary waves regularized model existence of periodic solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).MATHGoogle Scholar
  2. 2.
    S. Gabov, Introduction to the Theory of Nonlinear Waves (Mosk. Gos. Univ., Moscow, 1988) [in Russian].MATHGoogle Scholar
  3. 3.
    N. K. Shelkovnikov, “Induced soliton in a fluid,” JETP Lett. 82, 638–641 (2005).CrossRefGoogle Scholar
  4. 4.
    Al. N. Kravtsov, V. V. Kravtsov, and N. K. Shelkovnikov, “Numerical simulation of solitary waves on the surface of a liquid in a circular channel,” Comput. Math. Math. Phys. 44, 529–531 (2004).MathSciNetGoogle Scholar
  5. 5.
    T. G. Elizarova, M. A. Istomina, and N. K. Shelkovnikov, “Numerical simulation of solitary wave generation in a wind-water annular tunnel,” Math. Models Comput. Simul. 4, 552–559 (2012).CrossRefGoogle Scholar
  6. 6.
    K. O. Friedrichs, “On the derivation of the shallow water theory,” Commun. Appl. Math. Inst. Math. Mech. 1, 81–85 (1948).Google Scholar
  7. 7.
    J. B. Keller, “The Solitary Wave and Periodic Waves in Shallow Water,” Commun. Appl. Math. Inst. Math. Mech. 1, 323–339 (1948).MATHGoogle Scholar
  8. 8.
    B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1968; Am. Math. Soc., Providence, 1983).Google Scholar
  9. 9.
    H. A. Thomas, “The propagation of waves in steep prismatic conduits,” Iowa Univ. Hydraulic Conf. Proc. Eng. Studies Bull. 20, 214–229 (1940).Google Scholar
  10. 10.
    R. F. Dressler, “Stability of uniform flow and roll-wave formation,” Proceedings of the NBS Semicentennial Symposium on Gravity Waves, NBS Circular (Department of Commerce, USA, 1952).Google Scholar
  11. 11.
    R. F. Dressler, “Roll-waves in inclined open channels,” Commun. Appl. Math. 2, 149–194 (1949).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987; Nauka, Moscow, 1989).MATHGoogle Scholar
  13. 13.
    J. J. Stoker, Water Waves (Wiley, New York, 1957; Inostrannaya Literatura, Moscow, 1959).MATHGoogle Scholar
  14. 14.
    V. A. Il’in and E. G. Poznyak, Fundamentals of Calculus (Fizmatlit, Moscow, 2005), Part 2.Google Scholar
  15. 15.
    J. W. S. Rayleigh, The Theory of Sound (Macmillan, London, 1896; Gostekhizdat, Moscow, 1955).MATHGoogle Scholar
  16. 16.
    O. V. Bulatov and T. G. Elizarova, “Regularized shallow water equations and an efficient method for numerical simulation of shallow water flows,” Comput. Math. Math. Phys. 51, 160–174 (2011).CrossRefMathSciNetGoogle Scholar
  17. 17.
    T. G. Elizarova, A. A. Zlotnik, and O. V. Nikitina, Preprint Nos. 33, 36, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2011).Google Scholar
  18. 18.
    T. G. Elizarova and D. A. Saburin, “Numerical modeling of liquid fluctuations in fuel tanks,” Math. Models Comput. Simul. 5, 470–478 (2013).CrossRefGoogle Scholar
  19. 19.
    T. G. Elizarova and O. V. Bulatov, “Regularized shallow water equations and a new method of simulation of the open channel flows,” Comput. Fluids 46, 206–211 (2011).CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations