Computational Mathematics and Mathematical Physics

, Volume 53, Issue 12, pp 1781–1795 | Cite as

The bilinear complexity and practical algorithms for matrix multiplication

Article

Abstract

A method for deriving bilinear algorithms for matrix multiplication is proposed. New estimates for the bilinear complexity of a number of problems of the exact and approximate multiplication of rectangular matrices are obtained. In particular, the estimate for the boundary rank of multiplying 3 × 3 matrices is improved and a practical algorithm for the exact multiplication of square n × n matrices is proposed. The asymptotic arithmetic complexity of this algorithm is O(n 2.7743).

Keywords

bilinear complexity rank of the matrix multiplication problem boundary rank algorithms for exact and approximate matrix multiplication least-squares method objective function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Strassen, “Gaussian elimination is not optimal,” Numer. Math. 13, 354–356 (1969).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” J. Symbolic Comput. 9, 251–280 (1990).CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    S. Hunold, T. Rauber, and G. Runger, “Combining building blocks for parallel multi-level matrix multiplication,” Parallel Comput. 34, 411–426 (2008).CrossRefMathSciNetGoogle Scholar
  4. 4.
    I. Kaporin, “The aggregation and cancellation techniques as a practical tool for faster matrix multiplication,” Theor. Comput. Sci. 315, 469–510 (2004).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    J. Laderman, V. Y. Pan, and X.-H. Sha, “On practical algorithms for accelerated matrix multiplication,” Linear Algebra Appl. 162-164, 557–588 (1992).CrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Schönhage, “Partial and total matrix multiplication,” SIAM J. Comput. 10, 434–455 (1981).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    S. K. Sen, “Open problems in computational linear algebra,” Nonlinear Anal. 63, 926–934 (2005).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    “Complexity of matrix multiplication: An overview,” Kibern. Sb. 25, 139–236 (1988).Google Scholar
  9. 9.
    J. M. Landsberg, “Geometry and the complexity of matrix multiplication,” Bull. Am. Math. Soc. 45, 247–284 (2008).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    R. P. Brent, “Algorithms for matrix multiplications,” Comput. Sci. Dept. Report CS 157 (Stanford Univ., 1970).Google Scholar
  11. 11.
    S. Winograd, “On multiplication of 2 × 2 matrices,” Linear Algebra Appl. 4, 381–388 (1971).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    V. B. Alekseyev, “On the complexity of some algorithms of matrix multiplication,” J. Algorithms 6(1), 71–85 (1985).CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    J. Laderman, “A noncommutative algorithm for multiplying 3 × 3 matrices using 23 multiplications,” Bull. Am. Math. Soc. 82(1), 126–128 (1976).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    R. W. Johnson and A. M. McLoughlin, “Noncommutative bilinear algorithms for 3 × 3 matrix multiplication,” SIAM J. Comput. 15, 595–603 (1986).CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    O. M. Makarov, “Nekommutativnyi algoritm umnozheniya kvadratnykh matrits pyatogo poryadka, ispol’zuyushchii sto umnozhenii,” Comput. Math. Math. Phys. 27(2), 311–315 (1987).MATHGoogle Scholar
  16. 16.
    D. Bini, “Relations between exact and approximate bilinear algorithms: Applications,” Calcolo 17, 87–97 (1980).CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    N. S. Bakhvalov, Numerical Methods: Analysis, Algebra, Ordinary Differential Equations (Nauka, Moscow, 1975; Mir, Moscow, 1977).Google Scholar
  18. 18.
    D. Bini, M. Capovani, G. Lotti, and F. Romani, “O(n 2.7799) complexity for approximate matrix multiplication,” Inf. Process. Lett. 8(5), 234–235 (1979).CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    V. B. Alekseev and A. V. Smirnov, “On the exact and approximate bilinear complexities of multiplication of 4 × 2 and 2 × 2 matrices,” in Mathematics and Informatics 2, Dedicated to 75th Anniversary of Anatolii Alekseevich Karatsuba, Modern Problems in Mathematics (MIAN, Moscow, 2013), Vol. 17, pp. 135–152 [in Russian].Google Scholar
  20. 20.
    J. E. Hopcroft and L. R. Kerr, “On minimizing the number of multiplications necessary for matrix multiplication,” SIAM J. Appl. Math. 20, 30–36 (1971).CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    M. Bläser, “On the Complexity of the Multiplication of Matrices of Small Formats,” J. Complexity 19(1), 43–60 (2003).CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    D. Bini and G. Lotti, “Stability of fast algorithms for matrix multiplication,” Numer. Math. 36, 63–72 (1980).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Department of JusticeRussian Federal Center of Forensic ScienceMoscowRussia

Personalised recommendations