New modification of the double description method for constructing the skeleton of a polyhedral cone

Article

Abstract

A new modification of the double description method is proposed for constructing the skeleton of a polyhedral cone. Theoretical results and a numerical experiment show that the modification is considerably superior to the original algorithm in terms of speed.

Keywords

polyhedron polyhedral cone skeleton of a cone convex hull double description method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Preparata and M. Shamos, Computational Geometry: An Introduction (Springer-Verlag, New York, 1985; Mir, Moscow, 1989).Google Scholar
  2. 2.
    D. Avis, D. Bremner, and R. Seidel, “How Good Are Convex Hull Algorithms?” Comput. Geom. Theory Appl. 7(5, 6), 265–301 (1997).MathSciNetMATHGoogle Scholar
  3. 3.
    T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall, “The Double Description Method,” Contributions to the Theory of Games (Princeton University Press, Princeton, N. J., 1953; Fizmatgiz, Moscow, 1961).Google Scholar
  4. 4.
    E. Burger, “Uber homoge nelineare Ungleichungssysteme,” Angewandte Math. Mech. 36(3/4), 135–139 (1956).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    N. V. Chernikova, “Algorithm for Finding a General Formula for the Nonnegative Solutions of a System of Linear Equations,” USSR Math. Math. Phys. 4(4), 151–158 (1964).CrossRefGoogle Scholar
  6. 6.
    N. V. Chernikova, “Algorithm for Finding a General Formula for the Nonnegative Solutions of a System of Linear Inequalities,” USSR Math. Math. Phys. 5(2), 228–233 (1965).MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. N. Chernikov, Linear Inequalities (Nauka, Moscow, 1968) [in Russian].Google Scholar
  8. 8.
    S. I. Veselov, I. E. Parubochii, and V. N. Shevchenko, “A Software Program for Finding the Skeleton of the Cone of Nonnegative Solutions of a System of Linear Inequalities,” in System and Applied Software Programs (Gor’kov. Gos. Univ., Gor’kii, 1984), pp. 83–92 [in Russian].Google Scholar
  9. 9.
    F. Fernandez and P. Quinton, “Extension of Chernikova’s Algorithm for Solving General Mixed Linear Programming Problems,” Res. Rep. RR-0943 (INRIA, Rennes, 1988).Google Scholar
  10. 10.
    H. Le Verge, “A Note on Chernikova’s Algorithm,” Res. Rep. RR-1662 (INRIA, Rennes, 1992).Google Scholar
  11. 11.
    K. Fukuda and A. Prodon, “Double Description Method Revisited,” Combinatorics and Computer Science (Springer-Verlag, New York, 1996), pp. 91–111.Google Scholar
  12. 12.
    V. N. Shevchenko and A. Yu. Chirkov, “On the Complexity of Finding the Skeleton of a Cone,” Proceedings of 10th All-Russia Conference on Mathematical Programming and Applications (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1997), p. 237.Google Scholar
  13. 13.
    V. N. Shevchenko and D. V. Gruzdev, “A Modification of the Fourier-Motzkin Algorithm for Constructing Triangulations,” Diskret. Anal. Issled. Oper., Ser. 2. 10(10), 53–64 (2003).MathSciNetMATHGoogle Scholar
  14. 14.
    O. L. Chernykh, “Construction of the Convex Hull of a Finite Set of Points Using Triangulation,” USSR Comput. Math. Math. Phys. 31(8), 80–86 (1991).MathSciNetMATHGoogle Scholar
  15. 15.
    B. Chaselle, “An Optimal Convex Hull Algorithm in Any Fixed Dimension,” Discrete Comput. Geom., No. 10, 377–409 (1993).Google Scholar
  16. 16.
    A. Schrijver, Theory of Linear and Integer Programming (Wiley, Chichester, 1986; Mir, Moscow, 1991).MATHGoogle Scholar
  17. 17.
    M. M. Deza and M. Laurent, Geometry of Cuts and Metrics (Springer-Verlag, Berlin, 1997; MTsNMO, Moscow, 2001) [in Russian].MATHGoogle Scholar
  18. 18.
    N. Yu. Zolotykh and S. S. Lyalin, “A Parallel Algorithm for Finding the General Solution of the System of Linear Inequalities,” Vestn. Nizhegorod. Gos. Univ., No. 5, 193–199 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Nizhni Novgorod State UniversityNizhni NovgorodRussia

Personalised recommendations