Propagation of TM waves in a layer with arbitrary nonlinearity

Article

Abstract

A boundary value problem for Maxwell’s equations describing propagation of TM waves in a nonlinear dielectric layer with arbitrary nonlinearity is considered. The layer is located between two linear semi-infinite media. The problem is reduced to a nonlinear boundary eigenvalue problem for a system of second-order nonlinear ordinary differential equations. A dispersion equation for the eigenvalues of the problem (propagation constants) is derived. For a given nonlinearity function, the dispersion equation can be studied both analytically and numerically. A sufficient condition for the existence of at least one eigenvalue is formulated.

Keywords

nonlinear boundary eigenvalue problem for Maxwell’s equations nonlinear layer dispersion equation numerical-analytical solution method 

References

  1. 1.
    P. N. Eleonskii, L. G. Oganes’yants, and V. P. Silin, “Cylindrical Nonlinear Waveguides,” Sov. Phys. JETP 35(1), 44–47 (1972).Google Scholar
  2. 2.
    H. W. Schürmann, V. S. Serov, and Yu. V. Shestopalov, “TE-Polarized Waves Guided by a Lossness Nonlinear Three-Layer Structure,” Phys. Rev. 58, 1040–1050 (1998).CrossRefGoogle Scholar
  3. 3.
    R. I. Joseph and D. N. Christodoulides, “Exact Field Decomposition for TM Waves in Nonlinear Media,” Opt. Lett. 12, 826–828 (1987).CrossRefGoogle Scholar
  4. 4.
    K. M. Leung and R. L. Lin, “Scattering of Transverse-Magnetic Waves with a Nonlinear Film: Formal Field Solutions in Quadratures,” Phys. Rev. B 44, 5007–5012 (1991).CrossRefGoogle Scholar
  5. 5.
    D. V. Valovik and Yu. G. Smirnov, “Nonlinear Eigenvalue Problem for TM Electromagnetic Waves Propagating in a Nonlinear Layer,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 10, 70–74 (2008).Google Scholar
  6. 6.
    D. V. Valovik and Yu. G. Smirnov, “Propagation of TM Waves in a Kerr Nonlinear Layer,” Comput. Math. Math. Phys. 48, 2217–2225 (2008).MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. V. Valovik, “On the Existence of Solutions of a Nonlinear Boundary Eigenvalue Problem for TM-Polarized Electromagnetic Waves,” Izv. Vyssh. Uchebn. Zaved., Povolzh. Reg. Fiz. Mat. Nauki, No. 2, 86–94 (2008).Google Scholar
  8. 8.
    D. V. Valovik and Yu. G. Smirnov, “Calculation of the Propagation Constants of TM Electromagnetic Waves in a Nonlinear Layer,” J. Commun. Technol. Electron. 53, 883–889 (2008).CrossRefGoogle Scholar
  9. 9.
    D. V. Valovik and Yu. G. Smirnov, “Calculation of the Propagation Constants and Fields of Polarized Electromagnetic TM Waves in a Nonlinear Anisotropic Layer,” J. Commun. Technol. Electron. 54, 391–398 (2009).CrossRefGoogle Scholar
  10. 10.
    S. N. Kupriyanova, and Yu. G. Smirnov, “Propagation of Electromagnetic Waves in Cylindrical Dielectric Waveguides Filled with a Nonlinear Medium,” Comput. Math. Math. Phys.44, 1762–1772 (2004).MathSciNetGoogle Scholar
  11. 11.
    Yu. G. Smirnov, E. A. Khorosheva, and M. Yu. Medvedik, “Numerical Solution to the Problem of TM Electromagnetic Waves Propagating in Round Dielectric Waveguides Filled with a Nonlinear Medium,” Izv. Vyssh. Uchebn. Zaved., Povolzh. Region. Fiz.-Mat. Nauki, No. 1, 2–13 (2010).Google Scholar
  12. 12.
    D. V. Valovik, “The Problem Electromagnetic Waves Propagating in a Layer with Arbitrary Nonlinearity (I. TE Waves),” Izv. Vyssh. Uchebn. Zaved., Povolzh. Region. Fiz.-Mat. Nauki, No. 1, 18–27 (2010).Google Scholar
  13. 13.
    N. N. Bautin and E. A. Leontovich, Methods and Techniques for Qualitative Analysis of Dynamical Systems in the Plane: Reference Mathematical Library (Nauka, Moscow, 1990), Vol. 11 [in Russian].Google Scholar
  14. 14.
    I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators in Hilbert Spaces (Nauka, Moscow, 1965; Am. Math. Soc., Providence, 1969).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Penza State UniversityPenzaRussia

Personalised recommendations