Thermodynamically compatible conservation laws in the model of heat conducting radiating gas

Article

Abstract

Thermodynamic compatibility of the mass, momentum, and energy conservation laws that describe the motion of heat conducting gas in the presence of radiation heat exchange is considered. The study is based on the one-velocity two-component mathematical model of continuous compressible medium with the gas and radiation components. The work uses experimental data for radiation and other experimental data of modern physics.

Keywords

conservation laws radiating heat conducting gas pressure of the radiation component thermodynamics of gas turbine engine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Dorodnitsyn, Foundations of the Theory of Boundary Layer and Heat Conduction (Mosc. Fiz.-Tech. Inst., Moscow, 1968) [in Russian].Google Scholar
  2. 2.
    A. A. Dorodnitsyn, “On a Method for Numerical Solution of Certain Nonlinear Problems of Fluid Dynamics,” in Proc. of the Third All-Union Math. Congress (Akad. Nauk SSSR, Moscow, 1958), Vol. 3, pp. 447–453 [in Russian].Google Scholar
  3. 3.
    A. A. Dorodnitzin, “Method of Integral Relations for the Numerical Solution of Partial Differential Equations,” in Applications of Advanced Numerical Analysis and Digital Computing Problems (Ann Arbor Univ., Michigan, 1958), pp. 281–306.Google Scholar
  4. 4.
    O. M. Belotserkovskii, “Calculation of Flow around a Circular Cylinder,” in Computational Mathematics (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1958), No. 3, pp. 149–185 [in Russian].Google Scholar
  5. 5.
    O. M. Belotserkovskii and P. I. Chushkin, “Numerical Method of Integral Relations,” Zh. Vychisl. Mat. Mat. Fiz. 2, 731–759 (1962).Google Scholar
  6. 6.
    P. I. Chushkin, “Calculation of Certain Sonic Gas Flows,” Prikl. Mat. Mekh. 21(3), 353–360 (1957).Google Scholar
  7. 7.
    P. I. Chushkin, “The Method of Integral Relations for Supersonic Three-Dimensional Flows,” Zh. Vychisl. Mat. Mat. Fiz. 8, 853–864 (1968).Google Scholar
  8. 8.
    A. A. Dorodnitsyn, “Laminar Boundary Layer in Compressible Gas,” Dokl. Akad. Nauk SSSR 34(8), 234–242 (1942).Google Scholar
  9. 9.
    A. A. Dorodnitsyn, “Boundary Layer in Compressible Gas,” Prikl. Mat. Mekh. 6(6), 449–486 (1942).Google Scholar
  10. 10.
    I. N. Sokolova, “Temperature of a Plate in a Supersonic Flow with Account for Radiation,” in Theoretical Studies in Aerodynamics (Oborongiz, Moscow, 1957), pp. 206–221 [in Russian].Google Scholar
  11. 11.
    I. N. Sokolova, “Temperature of a Cone in a Supersonic Flow with Account for Radiation,” in Theoretical Studies in Aerodynamics (Oborongiz, Moscow, 1957), pp. 222–229 [in Russian].Google Scholar
  12. 12.
    S. K. Godunov, “Thermodynamics of Gases and Differential Equations,” Usp. Mat. Nauk 14(5(89)), 97–116 (1959).MATHMathSciNetGoogle Scholar
  13. 13.
    S. K. Godunov, “On the Concept of Generalized Solution,” Dokl. Akad. Nauk SSSR 134(6), 1279–1282 (1960) [Soviet Math. Dokl. 1 1194–1196 (1960)].MathSciNetGoogle Scholar
  14. 14.
    S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Fluid Dynamics Problems (Nauka, Moscow, 1976) [in Russian].Google Scholar
  15. 15.
    M. Ya. Ivanov, “Calculation of Flows of Gas in a Shock Tube of Variable Cross-Section,” Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidkosti Gaza, No. 3, 162–166 (1970).Google Scholar
  16. 16.
    S. K. Godunov and E. I. Romenskii, Elements of Mechanics of Continua and Conservation Laws (Nauchnaya Kniga, Novosibirsk, 1998) [in Russian].Google Scholar
  17. 17.
    S. K. Godunov and V. M. Gordienko, “Simple Galilei Invariant and Thermodynamically Compatible Conservation Laws,” Prikl. Mat. Mat. Fiz. 43(1), 3–16 (2002).MathSciNetGoogle Scholar
  18. 18.
    E. I. Romenskii, “Thermodynamically Compatible Conservation Laws in Models of Multiphase Continua,” in Mathematics in Applications (Novosibirsk, 2009), p. 221 [in Russian].Google Scholar
  19. 19.
    M. Ya. Ivanov, “On the Conservation Laws and Thermodynamics of the Working Process in High-Temperature Turbine Engines,” in Mathematics in Applications (Novosibirsk, 2009), pp. 120–121 [in Russian].Google Scholar
  20. 20.
    V. T. Zhukov, A. V. Zabrodin, and O. B. Feodoritova, “A Method for Solving Two-Dimensional Equations of Heat-Conducting Gas Dynamics in Domains of Complex Configurations,” Zh. Vychisl. Mat. Mat. Fiz. 33(8), 1240–1250 (1993) [Comput. Math. Math. Phys. (33) 1099–1109 (1993)].MATHMathSciNetGoogle Scholar
  21. 21.
    V. T. Zhukov and O. B. Feodoritova, “A Computer Program for the Solution of Nonstationary Three-Temperature Problem,” in Mathematics in Applications (Novosibirsk, 2009), pp. 116–117 [in Russian].Google Scholar
  22. 22.
    Methodology for Numerical Simulation of Two-Dimensional Nonsteady Flows of Heat Conducting Gas in the Temperature Approximation in Complexly Shaped Domains with Moving Parts (Nonstationary Three-Temperature Problem) (Institut Prikladnoi Matematiki, Ross. Akad Nauk, Moscow, 2008) [in Russian].Google Scholar
  23. 23.
    E. I. Romenskii, “Thermodynamically Compatible Conservation Laws Termodinamicheski in Models of Multiphase Continua,” in Mathematics in Applications (Novosibirsk, 2009), p. 221 [in Russian].Google Scholar
  24. 24.
    B. Ya. Trubchikov, A Thermal Method for Measuring Turbulence in Wind Tunnels (Trudy TsAGI, Moscow, 1938), Issue 372 [in Russian].Google Scholar
  25. 25.
    Yu. A. Ivanov and S. Yu. Krasheninnikov, “On the Determination of Turbulence Characteristics Using Diffusion Measurements,” Izv. Ross. Akad. Nauk, Ser. Mekh. Zhidkosti Gaza, No. 3, 89–96 (1970).Google Scholar
  26. 26.
    S. V. Belov, M. Ya. Ivanov, I. V. Tsvetkov, et al., “Methodology of Determining the Heat Transfer Factor and Parameters of Thermal Trail behind Strongly Heated Bodies,” Tekhn. Otchet TsIAM, No. 300-5723, 195–208 (2009).Google Scholar
  27. 27.
    M. Ya. Ivanov and R. Z. Nigmatullin, “Implicit Godunov Scheme of Improved Accuracy for the Numerical Integration of Euler Equations,” Zh. Vychisl. Mat. Mat. Fiz. 27, 1725–1735 (1987).MathSciNetGoogle Scholar
  28. 28.
    M. Ya. Ivanov, V. G. Krupa, and R. Z. Nigmatullin, “Implicit Godunov Scheme of Improved Accuracy for Integrating of Navier-Stokes Equations,” Zh. Vychisl. Mat. Mat. Fiz. 29, 888–901 (1989).MathSciNetGoogle Scholar
  29. 29.
    M. Ya. Ivanov and R. Z. Nigmatullin, “Simulation of Working Process in the Flow Passage of a Gas Turbine Engine,” in Andvances in Mechanics of Continua (Dal’nauka, Vladivostok, 2009), pp. 221–253 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Baranov Central Institute of Aviation MotorsMoscowRussia

Personalised recommendations