Upper bounds on the average number of iterations for some algorithms of solving the set packing problem

Article

Abstract

The set packing problem and the corresponding integer linear programming model are considered. Using the regular partitioning method and available estimates of the average number of feasible solutions of this problem, upper bounds on the average number of iterations for the first Gomory method, the branch-and-bound method (the Land and Doig scheme), and the L-class enumeration algorithm are obtained. The possibilities of using the proposed approach for other integer programs are discussed.

Key words

discrete optimization integer programming set packing problem Gomory cut L-partitioning enumeration of L-classes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Saiko, “Analysis of the Cardinality of L-Covers for Certain Cover Problems” in Discrete Optimization and Analysis of Complex Systems (Vychisl. Tsentr Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1989), pp. 76–97 [in Russian].Google Scholar
  2. 2.
    A. Schrijver, Theory of Linear and Integer Programming (Wiley, Chichester, 1986; Mir, Moscow, 1991).MATHGoogle Scholar
  3. 3.
    G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization (Wiley, 1999).Google Scholar
  4. 4.
    V. N. Shevchenko, Qualitative Issues of Integer Programming (Fizmatlit, Moscow, 1995) [in Russian].Google Scholar
  5. 5.
    A. A. Kolokolov, “Regular Partitionings and Cuts in Integer Programming,” Sib. Zh. Issled. Operat. 1(2), 18–39 (1994).MathSciNetGoogle Scholar
  6. 6.
    A. A. Kolokolov, M. V. Devyaterikova, and L. A. Zaozerskaya, Regular Partitionings in Integer Programming: Textbook (Omsk Gos. Univ, Omsk, 2007) [in Russian].Google Scholar
  7. 7.
    L. A. Zaozerskaya and A. A. Kolokolov, “On the Average Number of Iterations of Certain Algorithms for Solving the Set Packing Problem,” in Proc. of the XIV Baikal Int. Workshop on Optimization Methods and Applications (Irkutsk, 2008), Vol. 1, pp. 388–395 [in Russian].Google Scholar
  8. 8.
    N. N. Kuzyurin and S. A. Fomin, Efficient Algorithms and Computational Complexity (Mosk. Fiziko-tekhnicheskii inst., Moscow, 2007) [in Russian].Google Scholar
  9. 9.
    T. C. Hu, Integer Programming and Network Flows (Addison-Wesley, Reading, Mass., 1970; Mir, Moscow, 1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Omsk Division of the Institute of Mathematics, Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations