Estimates of the absolute error and a scheme for an approximate solution to scheduling problems

Article
  • 22 Downloads

Abstract

An approach is proposed for estimating absolute errors and finding approximate solutions to classical NP-hard scheduling problems of minimizing the maximum lateness for one or many machines and makespan is minimized. The concept of a metric (distance) between instances of the problem is introduced. The idea behind the approach is, given the problem instance, to construct another instance for which an optimal or approximate solution can be found at the minimum distance from the initial instance in the metric introduced. Instead of solving the original problem (instance), a set of approximating polynomially/pseudopolynomially solvable problems (instances) are considered, an instance at the minimum distance from the given one is chosen, and the resulting schedule is then applied to the original instance.

Keywords

scheduling theory minimization of maximum lateness absolute error estimate approximate solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Graham, E. L. Lawler, J. K. Lenstra, et al., “Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey,” Ann. Discrete Math., No. 5, 287–326 (1979).Google Scholar
  2. 2.
    J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker, “Complexity of Machine Scheduling Problems,” Eur. J. Operat. Res. 4, 270–275 (1980).MATHCrossRefGoogle Scholar
  3. 3.
    J. R. Jackson, “Scheduling a Production Line to Minimize Maximum Tardiness,” Manag. Sci. Res. Project, UCLA, 43 (1955).Google Scholar
  4. 4.
    C. N. Potts, “Analysis of a Heuristic for One Machine Sequencing with Release Dates and Delivery Times,” Operat. Res. 28, 1436–1441 (1980).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    L. A. Hall and D. B. Shmoys, “Jackson’s Rule for One-Machine Scheduling: Making a Good Heuristic Better,” Math. Operat. Res. 17, 22–35 (1992).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Mastrolilli, “Efficient Approximation Schemes for Scheduling Problems with Release Dates and Delivery Times,” J. Scheduling, No. 6, 521–531 (2003).Google Scholar
  7. 7.
    E. L. Lawler, “Optimal Sequencing of a Single Machine Subject to Precedence Constraints,” Manag. Sci. 19(5), 544–546 (1973).MATHCrossRefGoogle Scholar
  8. 8.
    B. B. Simons, “A Fast Algorithm for Single Processor Scheduling,” Proceedings of 19th IEEE Annual Symposium on Foundations of Computer Science (Ann. Arbor. Mich., New York, 1978), pp. 246–252.Google Scholar
  9. 9.
    K. R. Baker, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Preemptive Scheduling of a Single Machine to Minimize Maximum Cost Subject to Release Dates and Precedence Constraints,” Operat. Res. 31, 381–386 (1983).CrossRefGoogle Scholar
  10. 10.
    J. A. Hoogeveen, “Minimizing Maximum Promptness and Maximum Lateness on a Single Machine,” Math. Operat. Res. 21, 100–114 (1996).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. A. Lazarev and O. N. Shul’gina, “Pseudopolynomial-Time Algorithm for the NR-Hard Minimizing Maximum Lateness Problem,” Proceedings of 11th International Baikal School-Seminar on Optimization Methods and Applications, July 5–12, 1998 (Irkutsk, 1998), pp. 163–167.Google Scholar
  12. 12.
    A. A. Lazarev and O. N. Shul’gina, “Polynomial-Time Solvable Special Cases of the Minimizing Maximum Lateness Problem,” Available from VINITI, No. 3019-B00 (Kazan, 2000).Google Scholar
  13. 13.
    Yu. Yu. Finkel’shtein, Approximate Methods and Applications in Discrete Programming (Nauka, Moscow, 1976) [in Russian].Google Scholar
  14. 14.
    P. Brucker, M. R. Garey, and D. S. Johnson, “Scheduling Equal-Length Tasks under Treelike Precedence Constraints to Minimize Maximum Lateness,” Math. Operat. Res. 2(3), 275–284 (1977).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    J. Du and J. Y.-T. Leung, and G. H. Young, “Scheduling Chain-Structured Tasks to Minimize Makespan and Mean Flow Time,” Inf. Comput. 92(2), 219–236 (1991).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    M. R. Garey and D. S. Johnson, “’strong’ NP-Completeness Results: Motivation, Instances, and Implications,” J. Assoc. Comput. Machinery 25(3), 499–508 (1978).MATHMathSciNetGoogle Scholar
  17. 17.
    J. D. Ullman, “NP-Complete Scheduling Problems,” J. Comput. Syst. Sci. 10, 384–393 (1975).MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    A. A. Lazarev, R. R. Sadykov, and S. V. Sevastianov, “Scheme for Approximate Solution of the Problem 1|r j|L max,” Diskret. Anal. Issled. Operats., Ser. 2. 13(1), 57–76 (2006).Google Scholar
  19. 19.
    M. R. Garey and D. S. Johnson, “Scheduling Tasks with Nonuniform Deadlines on Two Processors,” J. Assoc. Comput. Machinery 23, 461–467 (1976).MATHMathSciNetGoogle Scholar
  20. 20.
    M. R. Garey and D. S. Johnson, “Two-Processor Scheduling with Start-Times and Deadlines,” SIAM J. Comput. 6(3), 416–426 (1977).MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    P. Brucker, J. Hurink, and W. Kubiak, “Scheduling Identical Jobs with Chain Precedence Constraints on Two Uniform Machines,” Math. Methods Operat. Res. 49(2), 211–219 (1999).MATHMathSciNetGoogle Scholar
  22. 22.
    W. Kubiak, “Exact and Approximate Algorithms for Scheduling Unit Time Tasks with Tree-Like Precedence Constraints,” Abstracts of EURO IX-TIMS XXVIII (Paris, 1988), p. 195.Google Scholar
  23. 23.
    B. Simons, “Multiprocessor Scheduling of Unit-Time Jobs with Arbitrary Release Times and Deadlines,” SIAM J. Comput. 2, 294–299 (1983).CrossRefMathSciNetGoogle Scholar
  24. 24.
    G. I. Davida and D. J. Linton, “A New Algorithm for the Scheduling of Tree Structured Tasks,” Proceedings of Conference on Information Sciences and Systems, Baltimore, MD (John Hopkins Univ., 1976), pp. 543–548.Google Scholar
  25. 25.
    T. C. Hu, “Parallel Sequencing and Assembly Line Problems,” Operat. Res. No. 9, 841–848 (1961).Google Scholar
  26. 26.
    P. Baptiste, P. Brucker, S. Knust, and V. Timkovsky, “Ten Notes on Equal-Execution-Time Scheduling,” Quart. J. Belgian French Italian Operat. Res. Soc., No. 2, 111–127 (2004).Google Scholar
  27. 27.
    J. Y.-T. Leung, O. Vornberger, J. D. Witthoff, “On Some Variants of the Bandwidth Minimization Problem,” SIAM J. Comput. 13(3), 650–667 (1984).MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    V. G. Timkovsky, “Identical Parallel Machines vs. Unit-Time Shops and Preemptions vs. Chains in Scheduling Complexity,” Eur. J. Operat. Res. 149(2), 355–376 (2003).MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    P. Brucker and S. Knust, “Complexity Results for Single-Machine Problems with Positive Finish-Start Time-Lags,” Computing 63, 299–316 (1999).MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    S. M. Johnson, “Optimal Two- and Three-Stage Production Schedules with Setup Times Included,” Naval Res. Logistics Quarterly 1, 61–68 (1954).CrossRefGoogle Scholar
  31. 31.
    J. Bruno, J. W. Jones III, and K. So, “Deterministic Scheduling with Pipelined Processors,” IEEE Trans. Comput. 29(4), 308–316 (1980).MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    A. A. Lazarev, “Pareto Optimal Set NR-Hard Problem of Minimization of the Maximum Lateness for a Single Machine,” J. Comput. Syst. Sci. Int. 45, 943–949 (2006).CrossRefGoogle Scholar
  33. 33.
    A. A. Lazarev, “Estimation of Absolute Error in Scheduling Problems of Minimizing the Maximum Lateness,” Dokl. Akad. Nauk 415(4), 446–449 (2007) [Dokl. Math. 76 (1), 572–574 (2007)].MathSciNetGoogle Scholar
  34. 34.
    A. A. Lazarev, Candidate’s Dissertation in Mathematics and Physics (Kazan. Gos. Univ., Kazan, 1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations