Integration of oscillating functions in a quasi-three-dimensional electrodynamic problem

  • I. V. Oseledets
  • S. L. Stavtsev
  • E. E. Tyrtyshnikov


Numerical methods designed for the integration of oscillating functions are compared. The methods are applied to a quasi-three-dimensional electrodynamic problem.


numerical methods quadrature formulas oscillating functions electromagnetic wave propagation in piecewise homogeneous media 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Tyrtyshnikov, “Structured Preconditioners for Operator Equations,” Numer. Linear Algebra Appl. 12, 251–259 (2002).CrossRefMathSciNetGoogle Scholar
  2. 2.
    V. I. Dmitriev and E. V. Zakharov, Integral Equations in Boundary Value Problems (Mosk. Gos. Univ., Moscow, 1987) [in Russian].Google Scholar
  3. 3.
    E. E. Tyrtyshnikov, “Modifying Methods for the Evaluation of Chebyshev-Laguerre and Gauss-Legendre Integrals,” Zh. Vychisl. Mat. Mat. Fiz. 44, 1187–1195 (2004) [Comput. Math. Math. Phys. 44, 1124-1131 (2004)].zbMATHMathSciNetGoogle Scholar
  4. 4.
    V. V. Smelov, “Gaussian-Type Quadratures Based on Trigonometric Bases,” Zh. Vychisl. Mat. Mat. Model., No. 3, 302–308 (2008).Google Scholar
  5. 5.
    M. Mori, “Discovery of the Double Exponential Transformation and Its Developments,” Res. Inst. Math. Sci. Kyoto Univ. 41, 897–935 (2005).zbMATHCrossRefGoogle Scholar
  6. 6.
    F. Stenger, “Integration Formulas Based on the Trapezoidal Formula,” J. Appl. Math., No. 12, 103–114 (1973).Google Scholar
  7. 7.
    T. Ooura and M. Mori, “A Robust Double Exponential Formula for Fourier-Type Integrals,” J. Comput. Appl. Math. 112, 299–241 (1999).CrossRefMathSciNetGoogle Scholar
  8. 8.
    V. I. Krylov, Approximate Evaluation of Integrals (Fizmatgiz, Moscow, 1959) [in Russian].Google Scholar
  9. 9.
    Ya. L. Geronimus, Theory of Orthogonal Polynomials (Gostekhteorizdat, Leningrad, 1950) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. V. Oseledets
    • 1
  • S. L. Stavtsev
    • 1
  • E. E. Tyrtyshnikov
    • 1
  1. 1.Institute of Computational MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations