Computational Mathematics and Mathematical Physics

, Volume 48, Issue 10, pp 1784–1810

Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves



Shock waves and blowup arising in third-order nonlinear dispersive equations are studied. The underlying model is the equation in
$$ u_t = (uu_x )_{xx} in\mathbb{R} \times \mathbb{R}_ + . $$
It is shown that two basic Riemann problems for Eq. (0.1) with the initial data
$$ S_ \mp (x) = \mp \operatorname{sgn} x $$
exhibit a shock wave (u(x, t) ≡ S(x)) and a smooth rarefaction wave (for S+), respectively. Various blowing-up and global similarity solutions to Eq. (0.1) are constructed that demonstrate the fine structure of shock and rarefaction waves. A technique based on eigenfunctions and the nonlinear capacity is developed to prove the blowup of solutions. The analysis of Eq. (0.1) resembles the entropy theory of scalar conservation laws of the form ut + uux = 0, which was developed by O.A. Oleinik and S.N. Kruzhkov (for equations in x ∊ ℝN) in the 1950s–1960s.


general theory of partial differential equations nonlinear dispersive equations shock waves rarefaction and blowup waves Riemann’s problem entropy theory of scalar conservation laws 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Bona and F. B. Weissler, “Blowup of Spatially Periodic Complex-Valued Solutions of Nonlinear Dispersive Equations,” Indiana Univ. Math. J. 50, 759–782 (2001).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Bressan, Hyperbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem (Oxford Univ. Press, Oxford, 2000).MATHGoogle Scholar
  3. 3.
    P. A. Clarkson, A. S. Fokas, and M. Ablowitz, “Hodograph Transformations of Linearizable Partial Differential Equations,” SIAM J. Appl. Math. 49, 1188–1209 (1989).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. M. Coclite and K. H. Karlsen, “On the Well-Posedness of the Degasperis-Procesi Equation,” J. Funct. Anal. 233, 60–91 (2006).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    W. Craig, T. Kappeler, and W. Strauss, “Gain of Regularity for Equations of KdV Type,” Ann. Inst. H. Poincaré 9, 147–186 (1992).MATHMathSciNetGoogle Scholar
  6. 6.
    C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics (Springer-Verlag, Berlin, 1999).Google Scholar
  7. 7.
    B. Dey, “Compacton Solutions for a Class of Two Parameter Generalized Odd-Order Korteweg-De Vries Equations,” Phys. Rev. E 57, 4733–4738 (1998).CrossRefMathSciNetGoogle Scholar
  8. 8.
    V. A. Galaktionov, Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications (Chapman and Hall/CRC, Boca Raton, FL, 2004).MATHGoogle Scholar
  9. 9.
    V. A. Galaktionov, “Sturmian Nodal Set Analysis for Higher-Order Parabolic Equations and Applications,” Adv. Differ. Equations 12, 669–720 (2007).MATHMathSciNetGoogle Scholar
  10. 10.
    V. A. Galaktionov, “On Higher-Order Viscosity Approximations of Odd-Order Nonlinear PDEs,” J. Eng. Math. 60, 173–208 (2008).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    V. A. Galaktionov, “Shock Waves and Compactons for Fifth-Order Nonlinear Dispersion Equations,” Eur. J. Appl. Math. (submitted).Google Scholar
  12. 12.
    V. A. Galaktionov and S. I. Pohozaev, “Existence and Blowup for Higher-Order Semilinear Parabolic Equations: Majorizing Order-Preserving Operators,” Indiana Univ. Math. J. 51, 1321–1338 (2002).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    V. A. Galaktionov and S. I. Pohozaev, “Blowup for Nonlinear Initial-Boundary Value Problems,” Dokl. Akad. Nauk 412, 444–447 (2007) [Dokl. Math. 75, 76–79 (2007)].Google Scholar
  14. 14.
    V. A. Galaktionov, “Nonlinear Dispersion Equations: Smooth Deformations, Compactons, and Generalizations to High Orders,” Zh. Vychisl. Mat. Mat. Fiz. 48, (2008) [Comput. Math. Math. Phys. 48, (2008)].Google Scholar
  15. 15.
    V. A. Galaktionov and S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics (Chapman and Hall/CRC, Boca Raton, FL, 2007).MATHGoogle Scholar
  16. 16.
    V. A. Galaktionov and J. L. Vazquez, A Stability Technique for Evolution Partial Differential Equations: A Dynamical Systems Approach (Birkhäuser, Boston, 2004).MATHGoogle Scholar
  17. 17.
    I. M. Gel’fand, “Some Problems in the Theory of Quasilinear Equations,” Usp. Mat. Nauk 14, 87–158 (1959).MATHGoogle Scholar
  18. 18.
    J. M. Hyman and P. Rosenau, “Pulsating Multiplet Solutions of Quintic Wave Equations,” Phys. D 123, 502–512 (1998).MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    M. Inc, “New Compacton and Solitary Pattern Solutions of the Nonlinear Modified Dispersive Klein-Gordon Equations,” Chaos Solitons Fractals 33, 1275–1284 (2007).MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    S. Kawamoto, “An Exact Transformation from the Harry Dym Equation to the Modified KdV Equation,” J. Phys. Soc. Jpn. 54, 2055–2056 (1985).CrossRefMathSciNetGoogle Scholar
  21. 21.
    S. N. Kruzhkov, “First-Order Quasilinear Equations in Several Independent Variables,” Mat. Sb. 10, 217–243 (1970).MATHCrossRefGoogle Scholar
  22. 22.
    J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires (Dunod, Paris, 1969).MATHGoogle Scholar
  23. 23.
    A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems (Birkhäuser, Basel, 1995).MATHGoogle Scholar
  24. 24.
    O. A. Oleinik, “Discontinuous Solutions of Nonlinear Differential Equations,” Usp. Mat. Nauk 12, 3–73 (1957).MathSciNetGoogle Scholar
  25. 25.
    O. A. Oleinik, “Uniqueness and Stability of the Generalized Solution of the Cauchy Problem for a Quasilinear Equation,” Usp. Mat. Nauk 14, 165–170 (1959).MathSciNetGoogle Scholar
  26. 26.
    A. V. Porubov and M. G. Velarde, “Strain Kinks in an Elastic Rod Embedded in a Viscoelastic Medium,” Wave Motion 35, 189–204 (2002).MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    P. Rosenau, “Nonlinear Dispersion and Compact Structures,” Phys. Rev. Lett. 73, 1737–1741 (1994).MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    P. Rosenau, “On Solitons, Compactons, and Lagrange Maps,” Phys. Lett. A 211, 265–275 (1996).MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    P. Rosenau, “On a Class of Nonlinear Dispersive-Dissipative Interactions,” Phys. D 123, 525–546 (1998).MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    P. Rosenau, “Compact and Noncompact Dispersive Patterns,” Phys. Lett. A 275, 193–203 (2000).MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    P. Rosenau and J. M. Hyman, “Compactons: Solitons with Finite Wavelength,” Phys. Rev. Lett. 70, 564–567 (1993).MATHCrossRefGoogle Scholar
  32. 32.
    P. Rosenau and S. Kamin, “Thermal Waves in an Absorbing and Convecting Medium,” Phys. D 8, 273–283 (1983).MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    P. Rosenau and D. Levy, “Compactons in a Class of Nonlinearly Quintic Equations,” Phys. Lett. A 252, 297–306 (1999).MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    J. Shen, W. Xu, and W. Li, “Bifurcation of Traveling Wave Solutions in a New Integrable Equation with Peakon and Compactons,” Chaos Solitons Fractals 27, 413–425 (2006).MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer-Verlag, New York, 1983).MATHGoogle Scholar
  36. 36.
    H. Takuwa, “Microlocal Analytic Smoothing Effects for Operators of Real Principal Type,” Osaka J. Math. 43, 13–62 (2006).MATHMathSciNetGoogle Scholar
  37. 37.
    Z. Yan, “Constructing Exact Solutions for Two-Dimensional Nonlinear Dispersion Boussinesq Equation: II. Solitary Pattern Solutions,” Chaos Solitons Fractals 18, 869–880 (2003).MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    R.-X. Yao and Z.-B. Li, “Conservation Laws and New Exact Solutions for the Generalized Seventh Order KdV Equation,” Chaos Solitons Fractals 20, 259–266 (2004).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of BathBathUK
  2. 2.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations