Computational Mathematics and Mathematical Physics

, Volume 48, Issue 9, pp 1454–1507 | Cite as

Overview of some new results concerning the theory and applications of the Rayleigh special function



The author’s previous work provided a detailed overview of the results concerning the theory and applications of the Rayleigh special function starting from its appearance in science until recent years. Its numerous applications in various areas of mathematics, physics, and other fields were described, and an extensive bibliography was presented. This work overviews the studies not covered in the previous one and addresses new results published in many monographs and journals. Additionally, results concerning the estimation of zeros of some special polynomials and functions closely related to the Rayleigh function are described. The overview embraces the issues addressed in the scientific literature up to the last years.


Rayleigh special function overview of new results related to the Rayleigh function Lommel polynomials estimates for zeros of Bessel functions orthogonal polynomials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. K. Kerimov, “The Rayleigh Function: Theory and Methods of Its Calculation,” Zh. Vychisl. Mat. Mat. Fiz. 39 1962–2006 (1999) [Comput. Math. Math. Phys. 39, 1883–1925 (1999)].MathSciNetGoogle Scholar
  2. 2.
    J. W. Rayleigh (Strutt), “Note on the Numerical Calculus of the Roots of Fluctuating Functions,” Proc. London Math. Soc. 5, 112–194 (1874).Google Scholar
  3. 3.
    G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge Univ. Press, Cambridge, 1944; Inostrannaya Literatura, Moscow, 1949).MATHGoogle Scholar
  4. 4.
    M. K. Kerimov, “Some Remarks on Works Concerning the Summation of Series with Inverse Powers of Zeros of First-Kind Bessel Functions,” Zh. Vychisl. Mat. Mat. Fiz. 47, 21–23 (2007) [Comput. Math. Math. Phys. 47, 180–182 (2007)].Google Scholar
  5. 5.
    P. L. Kapitsa, “Heat Conduction and Diffusion in a Liquid with Periodic Flow: I. Determination of the Wave Transport Coefficient in a Pipe, Slit, and Cannel,” Zh. Eksp. Teor. Fiz. 21, 964–978 (1951).Google Scholar
  6. 6.
    P. L. Kapitsa, “Computation of Negative Even Power Sums of the Zeros of Bessel Functions,” Dokl. Akad. Nauk SSSR, No. 2, 561–564 (1951).Google Scholar
  7. 7.
    N. N. Meiman, “On Recurrence Formulas for Power Sums of the Zeros of Bessel Functions,” Dokl. Akad. Nauk SSSR 108, 190–193 (1956).MathSciNetGoogle Scholar
  8. 8.
    C. C. Grossjean, “On Orthogonality Property of the Lommel Polynomials and Twofold Infinity of Relations between Rayleigh’s σ-Sums,” J. Comput. Appl. Math. 10, 355–382 (1984).CrossRefMathSciNetGoogle Scholar
  9. 9.
    G. Szegö, Orthogonal Polynomials (Am. Math. Soc., Providence. R.I., 1975; Fizmatlit, Moscow, 1962).MATHGoogle Scholar
  10. 10.
    V. S. Vladimirov, Generalized Functions in Mathematical Physics (Mir, Moscow, 1979; Nauka, Moscow, 1979).Google Scholar
  11. 11.
    H. M. Schwartz, “A Class of Continued Fractions,” Duke Math. J. 6, 48–65 (1940).CrossRefMathSciNetGoogle Scholar
  12. 12.
    O. Perron, Die Lehre von den Kettenbruchen. Zweite Auflage (Teubner-Verlag, Leipzig, 1929).Google Scholar
  13. 13.
    J. Shohat, Theorie Generale des Polynomes Orthogonaux de Tchebichef (Gauthier-Villars, Paris, 1934).Google Scholar
  14. 14.
    D. Dickinson, “On Lommel and Bessel Polynomials,” Proc. Am. Math. Soc. 5, 946–956 (1954).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    W. Hahn, “Uber Orthogonal Polynome mit drei Parameter,” Deutsche Math. 5, 273–278 (1940).MathSciNetGoogle Scholar
  16. 16.
    I. M. Sheffer, “Note on Functionally-Orthogonal Polynomials,” Töhoku Math. J. 33, 3–11 (1930).MATHGoogle Scholar
  17. 17.
    E. S. Titchmarsh, The Theory of Functions (Oxford Univ. Press, London, 1939; Fizmatlit, Moscow, 1980).MATHGoogle Scholar
  18. 18.
    H. L. Krall and O. Frink, “A New Class of Orthogonal Polynomials: The Bessel Polynomials,” Trans. Am. Math. Soc. 65(1), 100–115 (1949).CrossRefMathSciNetGoogle Scholar
  19. 19.
    J. Favard, “Sur les polynomes de Tchebicheff,” C.R. Acad. Sci. Paris 200, 2052–2053 (1935).Google Scholar
  20. 20.
    D. J. Dickinson, H. O. Pollak, and G. H. Wannier, “On a Class of Polynomials Orthogonal over a Denumerable Set,” Pacific J. Math. 6, 239–247 (1956).MATHMathSciNetGoogle Scholar
  21. 21.
    J. L. Goldberg, “Polynomials Orthogonal over a Denumerable Set,” Pacific J. Math. 15, 1171–1186 (1965).MATHMathSciNetGoogle Scholar
  22. 22.
    A. Hurwitz, “Über die Nullstellen der Besselschen Funktionen,” Math. Ann. 33, 246–266 (1889).CrossRefGoogle Scholar
  23. 23.
    M. E. Muldoon and A. Raza, “Convolution Formulas for Functions of Rayleigh Type,” J. Phys. A: Math. Gen. 31, 9327–9330 (1998).MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    A. McD. Mercer, “The Zeros of az 2 Jv + bzJv + cJ v(z) as Function of Order,” Int. J. Math. Math. Sci. 15, 319–322 (1992).MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    A. Zygmund, “Two Notes on the Summability of Infinite Series,” Colloq. Math. 1, 225–229 (1948).MATHMathSciNetGoogle Scholar
  26. 26.
    L. Lorch, “The Limits of Indetermination for Riemann Summation in Terms of Bessel Functions,” Colloq. Math. 15, 313–318 (1966).MATHMathSciNetGoogle Scholar
  27. 27.
    A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Bateman Manuscript Project (McGraw-Hill, New York, 1953; Nauka, Moscow, 1966), Vol. 2.Google Scholar
  28. 28.
    S. Minakshisundaram, “A New Summation Process,” Math. Student 11, 21–27 (1943).MATHMathSciNetGoogle Scholar
  29. 29.
    N. Kishore, “Congruence Properties of the Rayleigh Functions and Polynomials,” Duke Math. J. 35, 557–562 (1968).MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    N. Liron, “Some Infinite Sums,” SIAM J. Math. Anal. 2, 105–112 (1971).MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    K. Knopp, Theory and Application of Infinite Series (Blackie, London, 1954).Google Scholar
  32. 32.
    L. Carlitz, “Recurrences for the Rayleigh Functions,” Duke Math. J. 34, 581–590 (1967).MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    N. Kishore, “The Rayleigh Function,” Proc. Am. Math. Soc. 14, 527–533 (1963).MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    N. Kishore, “A Class of Formulas for the Rayleigh Function,” Duke Math. J. 34, 573–579 (1967).MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    N. Liron, “A Recurrence Concerning Rayleigh Functions,” SIAM J. Math. Anal. 2, 496–499 (1971).MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    N. Liron, “Sums of Roots for a Class of Transcendental Equations and Bessel Functions of Order One-Half,” Math. Comput. 25, 769–781 (1971).MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    R. P. Boas, Entire Functions (Academic, New York, 1954).MATHGoogle Scholar
  38. 38.
    D. Gupta and M. E. Muldoon, “Riccati Equations and Convolution Formulae for Functions of Rayleigh Type,” J. Phys. Ser. A: Math. Gen. 33, 1360–1368 (2000).MathSciNetGoogle Scholar
  39. 39.
    M. E. H. Ismail and M. E. Mildoon, “Bounds for the Small and Purely Imaginary Zeros of Bessel and Related Functions,” Methods Appl. Anal. 2(1), 1–21 (1995).MATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Dorodnicyn Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations