Local elimination algorithms for solving sparse discrete problems

Article

Abstract

The class of local elimination algorithms is considered that make it possible to obtain global information about solutions of a problem using local information. The general structure of local elimination algorithms is described that use neighborhoods of elements and the structural graph describing the problem structure; an elimination algorithm is also described. This class of algorithms includes local decomposition algorithms for discrete optimization problems, nonserial dynamic programming algorithms, bucket elimination algorithms, and tree decomposition algorithms. It is shown that local elimination algorithms can be used for solving optimization problems.

Keywords

sparse discrete problems local elimination algorithms graph theory dynamic programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. I. Zhuravlev, Selected Works (Magistr, Moscow, 1998) [in Russian].Google Scholar
  2. 2.
    Yu. I. Zhuravlev and G. F. Losev, “Neighborhoods in Discrete Mathematics Problems,” Kibern. Sistemn. Anal., No. 2, 32–41 (1995).Google Scholar
  3. 3.
    I. V. Sergienko and V. P. Shilo, Discrete Optimization: Problems, Methods, Studies (Naukova Dumka, Kiev, 2003) [in Russian].Google Scholar
  4. 4.
    R. Dechter, “Bucket Elimination: A Unifying Framework for Reasoning,” Artif. Intell. 113, 41–85 (1999).CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    R. E. Neapolitan, Probabilistic Reasoning in Expert Systems (Wiley, New York, 1990).Google Scholar
  6. 6.
    J. Pearl, Probabilistic Reasoning in Intelligent Systems (Morgan Kaufmann, San Mateo, 1998).Google Scholar
  7. 7.
    C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, “On the Desirability of Acyclic Database Schemes,” J. ACM 30, 479–513 (1983).CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    D. J. Rose, “A Graph-Theoretic Study of the Numerical Solution of Sparse Positive Definite Systems of Linear Equations,” in Graph Theory and Computing, Ed. by R. C. Read (Academic, New York, 1972), pp. 183–217.Google Scholar
  9. 9.
    Supply Chain Optimization: Product/Process Design, Facilities Location and Flow Control, Ser. Applied Optimization, XVI (Springer, New York, 2005), Vol. 94.Google Scholar
  10. 10.
    S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in Proc. 3rd Ann. ACM Symp. on Theory Comput. Mach. (New York, 1971), pp. 151–158.Google Scholar
  11. 11.
    S. L. Lauritzen and D. J. Spiegelhalter, “Local Computations with Probabilities on Graphical Structures and Their Application to Expert Systems,” J. Roy. Statist. Soc. 50, 205–247 (1988).MathSciNetGoogle Scholar
  12. 12.
    M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic, New York, 1980).MATHGoogle Scholar
  13. 13.
    B. Courcelle, “Graph Rewriting: An Algebraic and Logic Approach,” in Handbook of Theoretical Computer Science, vol. B, Ed. by J. Van Leeuwen (Elsevier, Amsterdam, 1990), pp. 193–242.Google Scholar
  14. 14.
    S. Arnborg, D. G. Corneil, and A. Proskurowski, “Complexity of Finding Embeddings in a k-Tree,” SIAM J. Alg. Disc. Meth. 8, 277–284 (1987).CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    O. A. Shcherbina, “On Local Algorithms for Solving Quasi-Block (Staircase) Discrete Programming Problems,” in Problemy kibernetiki (Nauka, Moscow, 1983), No. 40, pp. 171–200 [in Russian].Google Scholar
  16. 16.
    O. A. Shcherbina, “Local Algorithms for Block Treelike Discrete Programming Problems,” Zh. Vychisl. Mat. Mat. Fiz. 25, 1143–1154 (1985).MathSciNetMATHGoogle Scholar
  17. 17.
    O. A. Shcherbina, “On A Nonserial Modification of a Local Decomposition Algorithm for Discrete Optimization Problems,” Dinamich. Sistemy, No. 19, 179–190 (2005).Google Scholar
  18. 18.
    O. A. Shcherbina, “Elimination Decomposition Algorithms in Discrete Optimization Problems,” Tavrich. Vestn. Informatiki Mat., No. 2, 28–41 (2006).Google Scholar
  19. 19.
    O. A. Shcherbina, “Local Algorithms and Tree Decomposition in Discrete Optimization,” Dinamich. Sistemy, No. 20, 89–103 (2006).Google Scholar
  20. 20.
    U. Bertele and F. Brioschi, Nonserial Dynamic Programming (Academic, New York, 1972).MATHGoogle Scholar
  21. 21.
    F. Harary, R. Z. Norman, and D. Cartwright, Structural Models: An Introduction to the Theory of Directed Graphs (Wiley, New York, 1965).MATHGoogle Scholar
  22. 22.
    P. R. Amestoy, T. A. Davis, and I. S. Duff, “An Approximate Minimum Degree Ordering Algorithm,” SIAM J. Matrix Analys. Appl. 17, 886–905 (1996).CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    V. A. Emelichev, O. I. Mel’nikov, V. I. Sarvanov, and R. I. Tyshkevich, Lectures on Graph Theory (Nauka, Moscow, 1990) [in Russian].MATHGoogle Scholar
  24. 24.
    P. Heggernes, “Minimal Triangulations of Graphs: A Survey,” Discrete Math. 305, 297–317 (2006).CrossRefMathSciNetGoogle Scholar
  25. 25.
    V. A. Evstigneev and V. N. Kas’yanov, Dictionary of Graph Theory in Information and Computer Science (Nauka, Novosibirsk, 1999) [in Russian].Google Scholar
  26. 26.
    S. Parter, “The Use of Linear Graphs in Gauss Elimination,” SIAM Rev. 3, 119–130 (1961).CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    D. R. Fulkerson and O. A. Gross, “Incidence Matrices and Interval Graphs,” Pacific J. Math. 15, 835–855 (1965).MathSciNetMATHGoogle Scholar
  28. 28.
    M. Yannakakis, “Computing the Minimum Fill-in Is NP-Complete,” SIAM J. Matrix Analys. Appl. 2, 77–79 (1981).MathSciNetMATHGoogle Scholar
  29. 29.
    N. Robertson and P. Seymour, “Graph Minors II. Algorithmic Aspects of Treewidth,” J. Algorithms 7, 309–322 (1986).CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    H. L. Bodlaender, “Discovering Treewidth,” in Proc. SOFSEM, Lect. Notes Comput. Sci. 3381 (Springer, Berlin, 2006), pp. 1–16.Google Scholar
  31. 31.
    R. Dechter and Y. El Fattah, “Topological Parameters for Time-Space Tradeoff,” Artif. Intell. 125(1–2), 93–118 (2001).CrossRefMATHGoogle Scholar
  32. 32.
    P. Heggernes, “Treewidth, Partial k-Trees, and Chordal Graphs,” http://www.ii.uib.no/:_pinar/chordal.pdf.
  33. 33.
    G. A. Dirac, “On Rigid Circuit Graphs,” Ann. Math. Sem. (Hamburg Univ., Hamburg, 1961), Vol. 25, pp. 71–76.Google Scholar
  34. 34.
    P. A. Bernstein and N. Goodman, “Power of Natural Semijoins,” SIAM J. Comput. 10, 751–771 (1981).CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    O. A. Shcherbina, “Local Elimination Algorithms for Constraint Satisfaction Problems,” Tavricheskii Vestn. Inform. Mat., No. 1, 24–39 (2007).Google Scholar
  36. 36.
    O. A. Shcherbina, “Treelike Decomposition and Discrete Optimization Problems (Survey),” Kibern. Sist. Anal., No. 4, 102–118 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Institut für MathematikUniversity of ViennaViennaAustria

Personalised recommendations