Computational Mathematics and Mathematical Physics

, Volume 46, Issue 12, pp 2176–2186

# Three-dimensional numerical simulation of the inverse problem of thermal convection using the quasi-reversibility method

• A. T. Ismail-Zadeh
• A. I. Korotkii
• I. A. Tsepelev
Article

## Abstract

Inverse (time-reverse) simulation of three-dimensional thermoconvective flows is considered for a highly viscous incompressible fluid with temperature-dependent density and viscosity. The model of the fluid dynamics is described by the Stokes equations, the incompressibility and heat balance equations subject to the appropriate initial and boundary conditions. To solve the problem backward in time, the quasi-reversibility method is applied to the heat balance equation. The numerical solution is based on the introduction of a two-component vector potential for the velocity of the medium, on the application of the finite element method with a special tricubic spline basis for computing this potential, and on the application of the splitting method and the method of characteristics for computing the temperature. The numerical algorithm is designed to be executed on parallel computers. The proposed numerical algorithm is used to reconstruct the evolution of diapiric structures in the Earth’s upper mantle. The computational efficiency of the algorithm is analyzed on the basis of the appropriate functionals of residuals.

### Keywords

inverse problem ill-posed problem thermal convection incompressible fluid singularly perturbed problem quasi-reversibility method parallel algorithm

## Preview

Unable to display preview. Download preview PDF.

### References

1. 1.
D. P. McKenzie, J. M. Roberts, and N. O. Weiss, “Convection in the Earth’s Mantle: Towards a Numerical Simulation,” J. Fluid Mech. 62, 465–538 (1974).
2. 2.
H. Frick, F. H. Busse, and R. M. Clever, “Steady Three-Dimensional Convection at High Prandtl Number,” J. Fluid Mech. 127, 141–153 (1983).
3. 3.
G. Houseman, “The Dependence of Convection Planform on Mode of Heating,” Nature 332, 346–349 (1988).
4. 4.
L. Cserepes, M. Rabinowicz, and C. Rosemberg-Borot, “Three-Dimensional Convection in a Two-Layer Mantle,” J. Geophys. Res. 93, 12009–12025 (1988).
5. 5.
B. Travis, P. Olson, and G. Schubert, “The Transition from Two-Dimensional to Three-Dimensional Planforms in Infinite-Prandtl-Number Thermal Convection,” J. Fluid Mech. 216, 71–91 (1990).
6. 6.
U. Christensen and H. Harder, “3-D Convection with Variable Viscosity,” Geophys. J. Int. 104, 213–226 (1991).Google Scholar
7. 7.
M. Ogawa, G. Schubert, and A. Zebib, “Numerical Simulation of Three-Dimensional Thermal Convection in a Fluid with Strongly Temperature-Dependent Viscosity,” J. Fluid Mech. 233, 299–328 (1991).
8. 8.
P. J. Tackley, “Effects of Strongly Temperature-Dependent Viscosity on Time-Dependent, Three-Dimensional Models of Mantle Convection,” Geophys. Res. Lett. 20, 2187–2190 (1993).Google Scholar
9. 9.
A. T. Ismail-Zadeh, A. I. Lobkovskii, and B. M. Naimark, “A Hydrodynamic Model of the Formation of Sedimentary Basins as a Result of the Formation and Subsequent Phase Transition of a Magma Lens in the Upper Mantle,” in Computational Seismology (Nauka, Moscow, 1994), No. 26, pp. 139–155 [in Russian].Google Scholar
10. 10.
V. V. Rykov and V. P. Trubitsyn, “Numerical Simulation of the Three-Dimensional Mantle Convection and the Tectonics of Continental Plates,” in Computational Seismology (Nauka, Moscow, 1994), No. 26, pp. 94–102 [in Russian].Google Scholar
11. 11.
A. T. Ismail-Zadeh, A. I. Korotkii, B. M. Naimark, et al., “Implementation of a Three-Dimensional Hydrodynamic Model for Evolution of Sedimentary Basins,” Zh. Vychisl. Mat. Mat. Fiz. 38, 1190–1203 (1998) [Comput. Math. Math. Phys. 38, 1138–1151 (1998)].Google Scholar
12. 12.
A. T. Ismail-Zadeh, A. I. Korotkii, B. M. Naimark, and I. A. Tsepelev, “Numerical Simulation of Three-Dimensional Viscous Flows with Gravitational and Thermal Effects,” Zh. Vychisl. Mat. Mat. Fiz. 41, 1399–1415 (2001) [Comput. Math. Math. Phys. 41, 1331–1345 (2001)].Google Scholar
13. 13.
G. Schubert, D. L. Turcotte, and P. Olson, Mantle Convection in the Earth and Planets (Cambridge Univ. Press, Cambridge, 2001).Google Scholar
14. 14.
A. T. Ismail-Zadeh, I. A. Tsepelev, C. J. Talbot, and A. I. Korotkii, “Three-Dimensional Forward and Backward Modelling of Diapirism: Numerical Approach and Its Applicability to the Evolution of Salt Structures in the Pricaspian Basin,” Tectonophysics 387, 81–103 (2004).
15. 15.
A. T. Ismail-Zadeh, I. A. Tsepelev, C. Talbot, and P. Oster, “Three-Dimensional Modeling of Salt Diapirism: A Numerical Approach and Algorithm of Parallel Calculations,” Comput. Seis. Geodyn. 6, 33–41 (2004).Google Scholar
16. 16.
A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Nauka, Moscow, 1979; Winston, Washington, 1977).Google Scholar
17. 17.
R. Lattes and J.-L. Lions, The Method of Quasi-Reversibility; Applications to Partial Differential Equations (Elsevier, New York, 1969; Mir, Moscow, 1970).Google Scholar
18. 18.
A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer (Editorial URSS, Moscow, 2002) [in Russian].Google Scholar
19. 19.
A. T. Ismail-Zadeh, A. I. Korotkii, B. M. Naimark, and I. A. Tsepelev, “Three-Dimensional Numerical Simulation of the Inverse Problem of Thermal Convection,” Zh. Vychisl. Mat. Mat. Fiz. 43, 614–626 (2003) [Comput. Math. Math. Phys. 43, 587–599 (2003)].Google Scholar
20. 20.
A. Ismail-Zadeh, G. Schubert, I. Tsepelev, and A. Korotkii, “Inverse Problem of Thermal Convection: Numerical Approach and Application to Mantle Plume Restoration,” Phys. Earth Planet. Inter. 145, 99–114 (2004).
21. 21.
A. Ismail-Zadeh, G. Schubert, I. Tsepelev, and A. Korotkii, “Data Assimilation in Mantle Dynamics: Theory and Applications,” in Proc. Int. Workshop on Stagnant Slab: A New Keyword for Mantle Dynamics (Kyushu Univ., Fukuoka (Japan), 2005), pp. 134–137.Google Scholar
22. 22.
A. Ismail-Zadeh, G. Schubert, I. Tsepelev, and A. Korotkii, “Three-Dimensional Forward and Backward Numerical Modeling of Mantle Plume Evolution: Effects of Thermal Diffusion,” J. Geophys. Res. 111, B06401, doi:10.1029/2005JB003782 (2006).Google Scholar
23. 23.
A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Inverse Problems of Mathematical Physics (Editorial URSS, Moscow, 2004) [in Russian].Google Scholar
24. 24.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Nauka, Moscow, 1986; Pergamon Press, Oxford, 1987).Google Scholar
25. 25.
O. A. Ladyzhenskaya, Mathematical Issues of the Dynamics of Viscous Incompressible Fluid (Nauka, Moscow, 1970) [in Russian].Google Scholar
26. 26.
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961).
27. 27.
B. M. Naimark, “Local Existence and Uniqueness of a Solution to the Rayleigh-Benard Problem,” in Computational Seismology (Nauka, Moscow, 1988), No. 21, pp. 94–114 [in Russian].Google Scholar
28. 28.
R. E. Ewing and H. Wang, “A Summary of Numerical Methods for Time-Dependent Advection-Dominated Partial Differential Equations,” J. Comput. and Appl. Math. 128, 423–445 (2001).
29. 29.
A. Staniforth and J. Cote, “Semi-Lagrangian Integration Schemes for Atmospheric Models—a Review,” Monthly Weather Rev. 119, 2206–2223 (1991).
30. 30.
M. Falcone and R. Ferretti, “Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes,” SIAM J. Numer. Anal. 35, 909–940 (1998).
31. 31.
A. McDonald and J. R. Bates, “Improving the Estimate of the Departure Point Position in a Two-Time Level Semi-Lagrangian and Semi-Implicit Scheme,” Monthly Weather Rev. 115, 737–739 (1987).
32. 32.
N. S. Bakhvalov, Numerical Methods (Nauka, Moscow, 1975) [in Russian].Google Scholar
33. 33.
F. P. Vasil’ev, Optimization Methods (Faktorial, Moscow, 2002) [in Russian].Google Scholar

© MAIK “Nauka/Interperiodica” 2006

## Authors and Affiliations

• A. T. Ismail-Zadeh
• 1
• 2
• A. I. Korotkii
• 3
• I. A. Tsepelev
• 3
1. 1.International Institute of Earthquake Prediction Theory and Mathematical GeophysicsRussian Academy of SciencesMoscowRussia
2. 2.Geophysical InstituteKarlsruhe UniversityKarlsruheGermany
3. 3.Institute of Mathematics and Mechanics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia