Computational Mathematics and Mathematical Physics

, Volume 46, Issue 11, pp 1918–1931 | Cite as

Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier

  • V. E. Berezkin
  • G. K. Kamenev
  • A. V. Lotov


New hybrid methods for approximating the Pareto frontier of the feasible set of criteria vectors in nonlinear multicriteria optimization problems with nonconvex Pareto frontiers are considered. Since the approximation of the Pareto frontier is an ill-posed problem, the methods are based on approximating the Edgeworth-Pareto hull (EPH), i.e., the maximum set having the same Pareto frontier as the original feasible set of criteria vectors. The EPH approximation also makes it possible to visualize the Pareto frontier and to estimate the quality of the approximation. In the methods proposed, the statistical estimation of the quality of the current EPH approximation is combined with its improvement based on a combination of random search, local optimization, adaptive compression of the search region, and genetic algorithms.


multicriteria optimization Pareto frontier Edgeworth-Pareto hull approximation methods statistical estimates adaptive methods global search local optimization genetic optimization algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. S. Krasnoshchekov, V. V. Morozov, and V. V. Fedorov, “Decomposition in Design Problems,” Izv. Akad. Nauk SSSR, Ser. Tekh., No. 2, 7–17 (1979).Google Scholar
  2. 2.
    Yu. G. Evtushenko and M. A. Potapov, “Numerical Methods for Multicriteria Problems,” Dokl. Akad. Nauk SSSR 291, 25–29 (1986).MATHMathSciNetGoogle Scholar
  3. 3.
    R. E. Steuer, Multicriteria Optimization: Theory, Computation, and Applications (New York, Wiley, 1985; Radio i Svyaz’, Moscow, 1992).Google Scholar
  4. 4.
    A. V. Lotov, V. A. Bushenkov, G. K. Kamenev, and O. L. Chernykh, Computer and Search for Balanced Tradeoff: The Feasible Goals Method (Nauka, Moscow, 1997) [in Russian].Google Scholar
  5. 5.
    K. Miettinen, Nonlinear Multiobjective Optimization (Kluwer, Boston, 1999).MATHGoogle Scholar
  6. 6.
    A. Lotov, V. Bushenkov, and G. Kamenev, Feasible Goals Method: Search for Smart Decisions (Computing Center RAS, Moscow, 2001).Google Scholar
  7. 7.
    A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive Solution Maps: Approximation and Visualization of Pareto Frontier (Kluwer, Boston, 2004).Google Scholar
  8. 8.
    A. V. Lotov and I. I. Pospelova, Lectures on the Theory and Methods of Multicriteria Optimization (Mosk. Gos. Univ., Moscow, 2006) [in Russian].Google Scholar
  9. 9.
    N. M. Popov, “On the Approximation of the Pareto Set by the Convolution Method,” Vestn. Mosk. Gos. Univ. Vychisl. Mat. Kibern., No. 2, 35–41 (1982).Google Scholar
  10. 10.
    V. N. Nefedov, Regularization Methods for Multicriteria Optimization Problems (MAI, Moscow, 1984) [in Russian].Google Scholar
  11. 11.
    I. M. Sobol’ and R. B. Statnikov, Choice of Optimal Parameters in Multicriteria Problems (Nauka, Moscow, 1981) [in Russian].Google Scholar
  12. 12.
    R. B. Statnikov and J. Matusov, Multicriteria Optimization and Engineering (Chapman & Hall, New York, 1995).Google Scholar
  13. 13.
    K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, Chichester, 2001).MATHGoogle Scholar
  14. 14.
    Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Optimization (Academic, Orlando, 1985).MATHGoogle Scholar
  15. 15.
    A. V. Lotov, “On the Concept of Generalized Reachability Sets and Their Construction for Linear Control Systems,” Dokl. Akad. Nauk SSSR 250, 1081–1083 (1980).MATHMathSciNetGoogle Scholar
  16. 16.
    V. A. Bushenkov, D. V. Gusev, G. K. Kamenev, et al., “Visualization of the Pareto Set in Multidimensional Choice Problem,” Dokl. Akad. Nauk 335, 567–569 (1994).MATHGoogle Scholar
  17. 17.
    A. V. Lotov, G. K. Kamenev, and V. E. Berezkin, “Approximation and Visualization of the Pareto Frontier for Nonconvex Multicriteria Problems,” Dokl. Akad. Nauk 386, 738–741 (2002) [Dokl. Math. 66, 260–262 (2002)].MathSciNetGoogle Scholar
  18. 18.
    O. I. Larichev, Objective Models and Subjective Decisions (Nauka, Moscow, 1987) [in Russian].MATHGoogle Scholar
  19. 19.
    G. K. Kamenev and D. L. Kondrat’ev, “One Research Technique for Nonclosed Nonlinear Models,” Mat. Model., No. 3, 105–118 (1992).Google Scholar
  20. 20.
    G. K. Kamenev, “Approximation of Completely Bounded Sets by the Deep Holes Method,” Zh. Vychisl. Mat. Mat. Fiz. 41, 1751–1760 (2001) [Comput. Math. Math. Phys. 41, 1667–1676 (2001)].MATHMathSciNetGoogle Scholar
  21. 21.
    A. N. Shiryaev, Probability (Springer-Verlag, Berlin, 1984; Nauka, Moscow, 1989).Google Scholar
  22. 22.
    V. E. Berezkin, Analysis and Implementation of Approximation Methods for the Pareto Frontier for Nonlinear Systems (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2002) [in Russian].Google Scholar
  23. 23.
    Yu. G. Evtushenko, Solution Methods for Optimization Problems and Application to Optimization Systems (Nauka, Moscow, 1982) [in Russian].Google Scholar
  24. 24.
    R. Horst and P. M. Pardalos, Handbook on Global Optimization (Kluwer, Dordrecht, 1995).Google Scholar
  25. 25.
    A. A. Zhiglyavskii and A. G. Zhilinskas, Search Methods for Global Extrema (Nauka, Moscow, 1991) [in Russian].Google Scholar
  26. 26.
    V. E. Berezkin, G. K. Kamenev, and A. V. Lotov, Implementation of the Feasible Goals Method for Nonlinear Models in IS Exsel (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2000) [in Russian].Google Scholar
  27. 27.
    V. E. Berezkin, Experiments Concerning Approximation of the Pareto Frontier for Nonlinear Systems (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2005) [in Russian].Google Scholar
  28. 28.
    E. Laitinen and P. Neittaanmaki, “On Numerical Solution of the Problem Connected with the Control of the Secondary Cooling in the Continuous Casting Process,” Control Theory Adv. Tech. 4, 285–305 (1988).MathSciNetGoogle Scholar
  29. 29.
    K. Miettininen, M. M. Makela, and T. Mannikko, “Optimal Control of Continuous Casting by Nondifferentiable Multiobjective Optimization,” Comput. Optim. Appl. 11, 177–194 (1998).MathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Lotov, V. Berezkin, G. Kamenev, and K. Miettinen, “Optimal Control of Cooling Process in Continuous Casting of Steel Using a Visualization-Based Multicriteria Approach,” Appl. Math. Model. 29, 653–672 (2005).MATHCrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • V. E. Berezkin
    • 1
  • G. K. Kamenev
    • 1
  • A. V. Lotov
    • 1
  1. 1.Dorodnicyn Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations