Advertisement

Numerical stabilization of the Lorenz system by a small external perturbation

  • A. I. Noarov
Article

Abstract

The Lorenz system perturbed by noise and its invariant measure whose density obeys the stationary Fokker-Planck equation are analyzed numerically. A linear functional of the invariant measure is considered, and its variation caused by a variation in the right-hand side of the Lorenz system is calculated. A small (in modulus) external perturbation is calculated under which the strange attractor of the Lorenz system degenerates into a stable fixed point.

Keywords

Lorenz system Fokker-Planck equation stochastic differential equations chaotic dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strange Attractors Ed. by Ya. G. Sinai and L. P. Shil’nikov (Mir, Moscow, 1981) [in Russian].Google Scholar
  2. 2.
    A. I. Noarov, “The Dynamical System Response to a Small Variation of the Right-Hand Side and Finite-Dimensional Analogues of the Fokker-Planck Equation,” Zh. Vychisl. Mat. Mat. Fiz. 45, 1237–1250 (2005) [Comput. Math. Math. Phys. 45, 1195–1208 (2005)].zbMATHMathSciNetGoogle Scholar
  3. 3.
    E. C. Zeeman, “Stability of Dynamical Systems,” Nonlinearity 1, 115–155 (1988).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. I. Noarov, “A Sufficient Condition of Existence of a Time-Independent Solution to the Fokker-Planck Equation,” Zh. Vychisl. Mat. Mat. Fiz. 37, 587–598 (1997) [Comput. Math. Math. Phys. 37, 572–583 (1997)].zbMATHMathSciNetGoogle Scholar
  5. 5.
    A. I. Noarov, “Numerical Analysis of the Fokker-Planck Equation,” Zh. Vychisl. Mat. Mat. Fiz. 39, 1337–1347 (1999) [Comput. Math. Math. Phys. 39, 1283–1292 (1999)].zbMATHMathSciNetGoogle Scholar
  6. 6.
    S. V. Emel’yanov and S. K. Korovin, New Types of Feedback (Fizmatlit, Moscow, 1997) [in Russian].Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • A. I. Noarov
    • 1
  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations