Advertisement

Thermophysics and Aeromechanics

, Volume 26, Issue 4, pp 499–508 | Cite as

The influence of the period switching frequency on the heat exchange of a regenerative air heater

  • Yu. A. KirsanovEmail author
  • D. V. Makarushkin
  • A. Yu. Kirsanov
Article

Abstract

A laboratory stand with a regenerative air heater, an automated system for control and measurement of air flow parameters and a nozzle designed to study the heat transfer of a package of parallel plates under non-stationary conditions for different periods are described. The technique of measuring the transient temperature of cold and hot coolant flows taking into account the inertia of thermocouples and the method of measuring the heat transfer coefficient of plates are presented. The time variations of the Nusselt number and the heat power transmitted by the nozzle for individual periods are shown. Values of the average Nusselt number for the period obtained in experiments with the packages of plates of different materials and thicknesses are generalized by a criterial equation convenient for engineering calculations of regenerative air heaters with sheet packing of various types.

Keywords

laboratory stand regenerative air heater unsteady process measurement temperature heat exchange criterial equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.H. Hausen, Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom, Springer Verlag, Berlin, Heideberg, New York, 1976.CrossRefGoogle Scholar
  2. 2.
    V.K. Migai, V.S. Nazarenko, I.F. Novozhilov, and T.S. Dobryakov, Regenerative Rotary Air Heater, Leningrad, Energia, 1971.Google Scholar
  3. 3.
    Yu.A. Kirsanov, Cyclic Thermal Processes and the Theory of Thermal Conductivity in Regenerative Air Preheaters, Fizmatlit, Moscow, 2007.Google Scholar
  4. 4.
    J.E. Coppage and A.L. London, The periodic-flow regenerator — a summary of design theory, Trans. ASME, 1953, Vol. 75, No. 5, P. 779–787.Google Scholar
  5. 5.
    W.M. Kays and A.L. London, Heat Exchanger Thermal and Pressure-Drop Design. Compact Heat Exchangers, McGraw-Hill Book Company, Stanford, 1984.Google Scholar
  6. 6.
    M.I. Nizovtsev, V.Yu. Borodulin, and V.N. Letushko, Regenerative heat exchanger with a periodic change in the airflow direction, Thermophysics and Aeromechanics, 2015, Vol. 22, No. 6, P. 755–765.ADSCrossRefGoogle Scholar
  7. 7.
    Z.K. Sang, Z.M. Bo, X. Liu, and Y.W. Weng, Characteristic analysis of a rotary regenerative type catalytic combustion reactor for ultra low calorific value gas, J. Energy Resources Technol., 2017, Vol. 139, Iss. 6, P. 062208–1–062208–7.CrossRefGoogle Scholar
  8. 8.
    A. Akbari, S. Kouravand, and G. Chegini, Experimental analysis of a rotary heat exchanger for waste heat recovery from the exhaust gas of dryer, Applied Thermal Engng, 2018, Vol. 138, P. 668–674.CrossRefGoogle Scholar
  9. 9.
    V.K. Koshkin, E.K. Kalinin, G.A. Dreitzer, and S.A. Yarkho, Non-stationary Heat Transfer, Mechanical Engineering, Moscow, 1973.Google Scholar
  10. 10.
    V.D. Vilensky, Non-stationary convective heat exchange with external flow past bodies, High Temperature, Vol. 12, No. 5, 1974, P. 1091–1104.Google Scholar
  11. 11.
    J. Padet, Transient convective heat transfer, J. Braz. Soc. Mech. Sci. & Engng, 2005, Vol. 27, No 1, P. 74–95.CrossRefGoogle Scholar
  12. 12.
    Yu.A. Kirsanov, Influence of nonstationarity on heat transfer in the regenerative air heater, Russian Aeronautics, 2003, No 1, P. 31–34.Google Scholar
  13. 13.
    Yu.A. Kirsanov, A.E. Yudakhin, D.V. Makarushkin, and A.Yu. Kirsanov, Method of heat transfer research in regenerative air heater, Transactions of the Akademenergo, 2018, No. 2, P. 29–44.Google Scholar
  14. 14.
    P.P. Kremlevsky, Flowmeters and Quantity Counters, Mashinostroenie, Leningrad, 1975.Google Scholar
  15. 15.
    Yu.A. Kirsanov, A.Yu. Kirsanov, and A.E. Yudakhin, Measurement of thermal relaxation and temperature damping time in a solid, High Temperature, 2017, Vol. 55, No. 1, P. 114–119.CrossRefGoogle Scholar
  16. 16.
    N.A. Yaryshev, Theoretical Basis for Measuring Unsteady Temperature, Energoatomizdat, Leningrad, 1990.Google Scholar
  17. 17.
    M. Ahtmann, J. von Wolfersdorf, and G. Meyer, Application of the transient heat transfer measurement technique in a low aspect ratio pin fin cooling channel, ASME. J. Turbomach., 2015, Vol. 137, Iss. 12, P. 121006–1–121006–9.CrossRefGoogle Scholar
  18. 18.
    F. Bernhard, Technische Temperaturmessung. Springer-Verlag, Berlin, 2004.CrossRefGoogle Scholar
  19. 19.
    B. Garnier and F. Lanzetta, In situ realization/characterization of temperature and heat flux sensors, Advanced Spring School “Thermal Measurements & Inverse Techniques”, Domaine de Françon. Biarritz, March, 1-6, 2015, P. 79–87.Google Scholar
  20. 20.
    E. Kamke, Differentialgleichungen Lösungsmethoden und Lösungen. I. Gewöhnliche Differentialgleichungen, Leipzig, 1959.zbMATHGoogle Scholar
  21. 21.
    A.A. Zshukauskas, Convective Transfer in Heaters, Nauka, Moscow, 1982.Google Scholar
  22. 22.
    S.S. Kutateladze, Heat Transfer and Hydrodynamic Resistance, Handbook, Energoatomizdat, Moscow, 1990.Google Scholar
  23. 23.
    Heat Exchanger Design Handbook, Vol. 1, Heat Exchanger Theory, Contr. D.B. Spalding, J. Taborek, Hemisphere Publishing Corp., Washington, 1983.Google Scholar

Copyright information

© Yu.A. Kirsanov, D.V. Makarushkin, and A.Yu.Kirsanov 2019

Authors and Affiliations

  • Yu. A. Kirsanov
    • 1
    Email author
  • D. V. Makarushkin
    • 1
  • A. Yu. Kirsanov
    • 2
  1. 1.Institute of Energy and Advanced TechnologiesKazan Scientific Center RASKazanRussia
  2. 2.Kazan National Research Technical University n.a. A.N. Tupolev - KAIKazanRussia

Personalised recommendations