Thermophysics and Aeromechanics

, Volume 25, Issue 5, pp 643–658 | Cite as

Molecular shield of “OKA-T” spacecraft

  • A. V. Kashkovsky
  • P. V. Vashchenkov
  • A. N. Krylov
  • L. V. Mishina


Here, we present the results of computational studies of gas parameters in the high rarefaction zone formed behind a molecular shield mounted on the OKA-T spacecraft. The method of accounting for the effect of solar cell rotation on the rarefaction zone is described. The influence of jets of on-site engines and gas emission of the apparatus on the rarefaction zone has been estimated.

Key words

molecular shield vacuum test particle method method of direct statistical modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patent 2364557 RF, MPK51 VB64G1/22, B64G1/10. V.I. Abrashkin, R.N. Akhmetov, K.S. Elkin, A.N. Kirilin, V.I. Lukyaschenko, V.I. Mironov, V.O. Prudkoglyad, V.V. Semenchenko, N.R. Stratilatov, G.R. Uspensky, Spacecraft and method of research in ultra-deep cosmic vacuum behind a molecular protective screen with the help of this spacecraft, Applicant and patent holder FSUE TsNIIMash, No. 2008107133/11; appl. 28.02.2008; publ. 20.08.2009, Bull. No.23.Google Scholar
  2. 2.
    Patent 2372259 RF, MPK7 ?64G1/00. V.V. Blinov, L.L. Zvorykin, A.I. Ivanov, A. Ignatiev, V.I. Mashanov, V.V. Preobrazhensky, O.P. Pchelyakov, L.V. Sokolov, A device for growing and processing materials in outer space under ultrahigh vacuum conditions and a method for its operation (options). Applicant and patent holder the Institute of Physics and Semiconductors of the Siberian Branch of the Russian Academy of Sciences, Korolev Rocket and Space Corporation “Energia”, No. 2008118835/11; appl. 12.05.2008, publ. 10.11.2009; Bull. No.31.Google Scholar
  3. 3.
    D. Brodowski, NRLMSISE-00 HYPERLINK, Scholar
  4. 4.
    I. Afanasiev, Autonomous technological module for ISS, Novosti kosmonavtiki, 2013, No.3.Google Scholar
  5. 5.
    H. Klinkrad, G. Koppenwallner, D. Johannsmeier, M. Ivanov, and A. Kashkovsky, Free-molecular and transitional aerodynamics of spacecraft, Advances in Space Research, 1995, Vol. 16, No. 12, P. 33–36.ADSCrossRefGoogle Scholar
  6. 6.
    J.K. Haviland and M.L. Lavin, Application of the Monte Carlo method to heat transfer in a rarefied gas, Phys. Fluids, 1962, Vol. 5, No. 11, P. 1399–1405ADSCrossRefGoogle Scholar
  7. 7.
    M. Perlmuter, Analysis of Couette flow and heat transfer between parallel plates enclosing rarefied gas by Monte Carlo, Rarefied Gas Dynamics, in: C.L. Brundin (Ed.), Proc. 5th Symp. on RGD, 1967, Vol. 1, P. 455–480.Google Scholar
  8. 8.
    T.W. Tuer and G.S. Springer, A test particle Monte Carlo method, Computers & Fluids, 1973, Vol. 1, P. 399–417.CrossRefzbMATHGoogle Scholar
  9. 9.
    G.Z. Lotova and G.A. Mikhailov, Investigation and improvement of biased Monte-Carlo estimates, Comp. Math. and Math. Physics, 2015, Vol. 55, No. 1, P. 10–21.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    G.A. Mikhailov and S.V. Rogazinskii, Weighted modification of direct statistical modeling with randomized branching for approximate solution of a kinetic equation, Dokl. Math., 2015, Vol. 92, No. 3, P. 677–681.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A.N. Krylov, L.V. Mishina, N.A. Tchudina, and B.A. Rabinovich, Pressure change dynamics in the unpressurized module of satellites in geostationary orbits, Aerospace Instrument-Making, 2006, No.3.Google Scholar
  12. 12.
    G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994.Google Scholar
  13. 13.
    M.S. Ivanov and S.V. Rogazinsky, Analysis of the numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics, Soviet J. Numer. Anal. Math. Modelling, 1988, Vol. 3, No. 6, P. 453–465.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M.B. Belotserkovsky, E.N. Golubev, V.K. Dushin, A.N. Krylov, L.V. Mishina, V.P. Pylev, and B.A. Rabinovich, Some experimental results of measurements of the parameters of the own ambient environment of the OS “MIR” in “Astra-2” experiment, Cosmonautics and Rocket Engineering, 1999, No. 17, P. 148–158.Google Scholar
  15. 15.
    On-site atmosphere of spacecraft and its influence on the functioning of devices and systems, Encyclopedia “Mashinostroenie”, Vol. IV-22, book 1, ch. 3.10, Mashinostroenie, Moscow, 2012, P. 411–424.Google Scholar
  16. 16.
    M.S. Ivanov, G.N. Markelov, and S.F. Gimelshein, Statistical simulation of reactive rarefied flows: numerical approach and applications, AIAA Paper, 1998, No. 98–2669.zbMATHGoogle Scholar
  17. 17.
    M.S. Ivanov, A.V. Kashkovsky, S.F. Gimelshein, G.N. Markelov, A.A. Alekseenko, Ye.A. Bondar, G.A. Zhukova, S.B. Nikiforov, and P.V. Vashchenkov, SMILE system for 2D/3D DSMC computations, in: M.S. Ivanov and A.K. Rebrov (Eds.), Rarefied gas dynamics: Proc. 25th Int. symp. on rarefied gas dynamics, Saint-Petersburg, Russia, July 21–28, 2006, Siberian Branch of Russian Academy of Sci., Novosibirsk, 2007, P. 539–544.Google Scholar
  18. 18.
    D. Giordano, M. Ivanov, A. Kashkovsky, G. Markelov, G. Tumino, and G. Koppenwallner, Application of numerical multizone approach to the study of satellite thruster plumes, J. Spacecraft and Rockets, 1998, Vol. 35, No. 4, P. 502–508.ADSCrossRefGoogle Scholar
  19. 19.
    M.S. Ivanov, G.N. Markelov, A.V. Kashkovsky, and D. Giordano, Numerical analysis of thruster plume interaction problems, European Space Agency (Special Publication) ESA SP, 1997, No. 398, P. 603–606.ADSGoogle Scholar
  20. 20.
    A.V. Kashkovsky, P.V. Vashchenkov, and T. Banyai, Modeling of reentry space vehicle aerodynamics with control thruster plume — free-stream interaction, Thermophysics and Aeromechanics, 2014, Vol. 21, No. 6, P. 719–728.ADSCrossRefGoogle Scholar

Copyright information

© Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences 2018

Authors and Affiliations

  • A. V. Kashkovsky
    • 1
  • P. V. Vashchenkov
    • 1
  • A. N. Krylov
    • 2
  • L. V. Mishina
    • 2
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics SB RASNovosibirskRussia
  2. 2.RSC “Energia”KorolevRussia

Personalised recommendations