Advertisement

Thermophysics and Aeromechanics

, Volume 23, Issue 5, pp 701–711 | Cite as

Numerical investigation of the variable nozzle effect on the mixed flow turbine performance characteristics

  • B. Meziri
  • M. Hamel
  • O. Hireche
  • K. Hamidou
Article
  • 50 Downloads

Abstract

There are various matching ways between turbocharger and engine, the variable nozzle turbine is the most significant method. The turbine design must be economic with high efficiency and large capacity over a wide range of operational conditions. These design intents are used in order to decrease thermal load and improve thermal efficiency of the engine. This paper presents an original design method of a variable nozzle vane for mixed flow turbines developed from previous experimental and numerical studies. The new device is evaluated with a numerical simulation over a wide range of rotational speeds, pressure ratios, and different vane angles. The compressible turbulent steady flow is solved using the ANSYS CFX software. The numerical results agree well with experimental data in the nozzleless configuration. In the variable nozzle case, the results show that the turbine performance characteristics are well accepted in different open positions and improved significantly in low speed regime and at low pressure ratio.

Key words

variable nozzle design mixed flow turbine turbocharger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Hakeem, C.-C. Su, A. Costall, and R.F. Martinez-Botas, Effect of volute geometry on the steady and unsteady performance of mixed-flow turbines, J. Power and Energy, 2007, Vol. 221, Part A, P. 535–550.CrossRefGoogle Scholar
  2. 2.
    J. Panting, K.R. Pullen, and R.F. Martinez-Botas, Turbocharger motor-generator for improvement of transient performance in an internal combustion engine, in: Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engng, 2001, Vol. 215, No. 3, P. 369–383.Google Scholar
  3. 3.
    I. Kolmanovsky, A.G. Stefanopoulou, and B.K. Powell, Improving turbocharged Diesel engine operation with turbo power assist system, in: Proc. 1999 IEEE, USA, August 22–27, 1999, P. 454–459.Google Scholar
  4. 4.
    M.R. Shahhosseini, A. Hajilouy-Benisi, and M. Rad, Numerical and experimental investigation of the flow and performance characteristics of twin-entry radial turbine under full and partial admission conditions, in: Proc. ASME Turbo Expo, Vol. 6: Turbomachinery, Parts A, B, and C. Berlin, Germany, June 9–13, 2008, GT2008-50397, 2008, P. 1507–1517.Google Scholar
  5. 5.
    J. Zhang, W. Zhuge, L. Hu, and S. Li, Design of turbocharger variable nozzle, in: Proc. ASME Turbo Expo, Vol. 6: Turbo Expo 2007, Parts A and B, Montreal, Canada, May 14–17, 2007, GT2007-27562, 2007, P. 1313–1319.Google Scholar
  6. 6.
    S. Rajoo and R.F. Martinez-Botas, Unsteady effect in a nozzled turbocharger turbine, in: Proc ASME Turbo Expo, Vol. 6: Turbo Expo 2007, Parts A and B, Montreal, Canada, May 14–17, 2007, GT2007-28323, 2007, P. 1159–1170.Google Scholar
  7. 7.
    M. Abidat, H. Chen, N.C. Baines, and M.R. Firth, Design of a highly loaded mixed flow turbine, Proc. Inst. Mech. Engng, 1992, Part A, Vol. 206, P. 95–107.CrossRefGoogle Scholar
  8. 8.
    H. Chen, N.C. Baines, and M. Abidat, Exit through study of mixed-flow turbines with inlet incidence variation, Proc. Inst. Mech. Engng, 1997, Vol. 211, Part A, P. 461–475.CrossRefGoogle Scholar
  9. 9.
    S.W.T. Spence and D.W. Artt, An experimental assessment of incidence losses in a radial inflow turbine rotor, Proc. Inst. Mech. Engng, 1998, Vol. 212, Part A, P. 43–53.CrossRefGoogle Scholar
  10. 10.
    Srithar Rajoo and R.F. Martinez-Botas, Lean and straight nozzle vanes in a variable geometry turbine: a steady and pulsating flow investigation, in: Proc ASME Turbo Expo. Vol. 6: Turbomachinery, Parts A, B, and C. Berlin, Germany, June 9–13, 2008. GT2008-50828. 2008. P. 1589–1601.Google Scholar
  11. 11.
    A. Simpson, S. Spence, and J. Watterson, Numerical and experimental study of the performance effects of varying vaneless space and vane solidity in radial inflow turbine stators, in: Proc. ASME Turbo Expo, Vol. 6: Turbomachinery, Parts A, B, and C, Berlin, Germany, June 9–13, 2008, GT2008-50261, 2008.Google Scholar
  12. 12.
    N. Lymberopoulos, N.C. Baines, and N. Watson, Flow in single and twin-entry radial turbine volute, in: ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition. Vol. 1: Turbomachinery, Amsterdam, The Netherlands, June 6–9, 1988, Paper 88-GT-59, 1988, P. 1–8.Google Scholar
  13. 13.
    C. Arcoumanis, R.F. Martinez-Botas, J.M. Nouri, and C.C. Su, Performance and exit flow characteristics of mixed-flow turbines, Int. J. Rotating Mach, 1997, Vol. 3, No. 4, P. 277–293.CrossRefGoogle Scholar
  14. 14.
    M. Hamel, M.K. Hamidou, H.T. Cherif, M. Abidat, and S.A. Litim, Design and flow analysis of radial and mixed flow turbine volutes, in: Proc ASME Turbo Expo, Vol. 6: Turbomachinery, Parts A, B, and C, Berlin, Germany, June 9–13, 2008, GT2008-50503, 2008, P. 2329–2338.Google Scholar
  15. 15.
    S. Rapley, C. Eastwick, and K. Simmons, Design and performance of vaneless volutes for radial inflow turbines, Proc. Inst. Mech. Engng, 1994, Vol. 208, P. 199–211.Google Scholar
  16. 16.
    V. Yakhot and S.A. Orszag, Renormalization group analysis of turbulence: I. Basic Theory, J. Sci. Computing, 1986, Vol. 1, No. 1, P. 1–51.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    S. Rapley, C. Eastwick, and K. Simmons, The application of CFD to model windage power loss from a spiral bevel gear, in: ASME Turbo Expo, Vol. 6: Turbo Expo 2007, Parts A and B, Montreal, Canada, May 14–17, 2007, GT2007-27879, 2007, P. 47–56.Google Scholar
  18. 18.
    S.V. Patankar and D.B. Spalding, Calculation procedure for heat, mass and momentum transfer in threedimensional parabolic flows, Int. J. Heat Mass Transfer, 1972, Vol. 15, P. 1778–1806.zbMATHGoogle Scholar
  19. 19.
    C.M. Rhie and W.L.A. Chow, Numerical study of the turbulent flow past an isolated airfoil with trailing edge separation, AIAA J., 1982, Vol. 21, P. 1525–1532.ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Abidat, M. Hachemi, M.K. Hamidou, and N.C. Baines, Prediction of the steady and non-steady flow performance of a highly loaded mixed flow turbine, in: Proc. Inst. Mech. Eng., 1998, Vol. 212, Pt. A, P. 173–184.CrossRefGoogle Scholar
  21. 21.
    M. Hamel, M. Abidat, and S.A. Litim, Investigation of the mixed flow turbine performance under inlet pulsating flow conditions, Comptes Rendus Mécanique, 2012, Vol. 340, P. 165–176.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.École nationale polytechnique d’OranEl M’Naouer, OranAlgérie
  2. 2.Université des Sciences et de la Technologie d’OranEl M’Naouer, OranAlgérie

Personalised recommendations