Advertisement

Thermophysics and Aeromechanics

, Volume 23, Issue 5, pp 677–692 | Cite as

Turbulent circulation above the surface heat source in a stably stratified environment

  • A. F. KurbatskiiEmail author
  • L. I. Kurbatskaya
Article

Abstract

The results of the numerical modeling of turbulent structure of the penetrating convection above the urban heat island with a small aspect ratio in a stably stratified medium at rest are presented. The gradient diffusion representations for turbulent momentum and heat fluxes are used, which depend on three parameters — the turbulence kinetic energy, the velocity of its spectral expenditure, and the dispersion of temperature fluctuations. These parameters are found from the closed differential equations of balance in the RANS approach of turbulence description. The distributions of averaged velocity and temperature fields as well as turbulent characteristics agree well with measurement data.

Keywords

turbulence planetary boundary layer urban heat island large-scale circulation numerical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Lu, P. Arya, W.H. Snyder, and R.E. Lawson, A laboratory study of the urban heat island in a calm and stably stratified environment. Part I, II, J. Appl. Meteor., 1997, Vol. 36, No. 10, P. 1377–1402.ADSCrossRefGoogle Scholar
  2. 2.
    G.E. Willis and J.W. Deardorff, A laboratory model of the unstable planetary boundary layer, J. Atmos. Sci., 1974, Vol. 31, P. 1297–1307.ADSCrossRefGoogle Scholar
  3. 3.
    A.F. Kurbatskiy and L.I. Kurbatskaya, Three-parameter model of turbulence for the atmospheric boundary layer over an urbanized surface, Izvestiya. Atmospheric and Oceanic Phys., 2006, Vol. 42, No. 4, P. 439–455.ADSCrossRefGoogle Scholar
  4. 4.
    D.W. Byun and S.P.S. Araya, A two-dimensional mesoscale numerical model an urban mixed layer. I. Model formulation, surface energy budget, and mixed layer dynamic, Atmospheric Environment, 1990, Vol. 24A, No. 4, P. 829–844.ADSCrossRefGoogle Scholar
  5. 5.
    R.A. Pielke, Mesoscale meteorological modeling. 2nd edition, Academic Press, New York, 2002.Google Scholar
  6. 6.
    A.F. Kurbatsky, Modeling of Non-local Turbulent Transfer of Momentum and Heat, Nauka, Novosibirsk, 1988.Google Scholar
  7. 7.
    C.G. Speziale, Modeling of turbulent transport equations, in: T.B. Gatski, M.Y. Hussaini, J.L. Lumley (Eds.), Simulation and Modeling of Turbulent Flows, Oxford University Press, Oxford, 1996.Google Scholar
  8. 8.
    Y. Cheng, V.M. Canuto, and A.M. Howard, An improved model for the turbulent PBL, J. Atmos. Sci., 2002, Vol. 59, No. 9, P. 1550–1565.ADSCrossRefGoogle Scholar
  9. 9.
    T.P. Sommer and R.M.C. So, On the modeling of homogeneous turbulence in a stably stratified flow, Phys. Fluids, 1995, Vol. 7, No. 11, P. 2766–2777.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    L.H. Jin, R.M.C. So, and T.B. Gatski, Equilibrium states of turbulent homogeneous buoyant flows, J. Fluid Mech., 2003, Vol. 482, P. 207–233.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    C. Beguier, I. Dekeyser, and B.E. Launder, Ratio of scalar and velocity dissipation time scales in shear flow temperature, Phys. Fluids, 1978, Vol. 21, No. 3, P. 307–310.ADSCrossRefGoogle Scholar
  12. 12.
    Y.A. Panofsky, Y. Tennekes, D.Y. Lenshow, and J.C. Wyngaard, The characteristics of turbulent velocity components in the surface layer under convective conditions, Boundary Layer Meteor., 1977, Vol. 11, P. 353–361.ADSCrossRefGoogle Scholar
  13. 13.
    J.A. Businger, J.C. Wyngaard, Y. Izumi, and E.F. Bradley, Flux profile relationship in the atmospheric surface layer, J. Atmos. Sci., 1971, Vol. 28, P. 181–189.ADSCrossRefGoogle Scholar
  14. 14.
    J.-F. Louis, A parametric model of vertical eddy fluxes in the atmosphere, Boundary-Layer Meteor., 1979, Vol. 17, No. 2, P. 187–202.ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics. Vol. 1: Mechanics of Turbulence, MIT Press, Cambridge, Mass., 1971.Google Scholar
  16. 16.
    J.C. Andre, G. de Moor, F. Laccarere, G. Therry, and R. du Vachat, Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer, J. Atmos. Sci., 1978, Vol. 35, P. 1861–1883.ADSCrossRefGoogle Scholar
  17. 17.
    P.G. Duynkerke, Application of the e-ε turbulence closure model to the neutral and stable atmospheric boundary layer, J. Atmos. Sci., 1988, Vol. 45, No. 5, P. 865–879.ADSCrossRefGoogle Scholar
  18. 18.
    P. Roache, Computational Fluid Dynamics, Hermosa, Albuquerque, New Mexico, 1976.Google Scholar
  19. 19.
    O. Zeman and J.L. Lumley, Buoyancy effects in entraining turbulent boundary layers: a second-order closure study, in: F. Durst, B.E. Launder, F.W. Schmidt, and J.H. Whitelaw (Eds.), Turbulent Shear Flows I, Springer, Berlin, Heidelberg, 1979, P. 295–306.CrossRefGoogle Scholar
  20. 20.
    A.A.A. Andren, TKE dissipation model for the atmospheric boundary layer, Boundary Layer Meteor., 1992, Vol. 56, P. 207–221.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics SB RASNovosibirskRussia
  2. 2.Institute of Computational Mathematics and Mathematical Geophysics SB RASNovosibirskRussia

Personalised recommendations