Advertisement

Thermophysics and Aeromechanics

, Volume 23, Issue 5, pp 667–675 | Cite as

Numerical modeling of the swirling turbulent wake decay past a self-propelled body

  • A. G. Demenkov
  • G. G. Chernykh
Article

Abstract

Numerical analysis of the swirling turbulent wake degeneration past a self-propelled body has been carried out. It has been shown that starting from the distances of the order of 100 diameters from the body, the flow becomes practically shearless. A simplified mathematical model of the far swirling wake past a self-propelled body has been constructed.

Key words

swirling turbulent wake past a self-propelled body mathematical modeling self-similar degeneration shearless flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Schets, Injection and mixing in turbulent flow, in: M. Summerfield (Ed.), Progress in Astronautics and Aeronautics, Vol. 68, New York University, 1980.Google Scholar
  2. 2.
    A.G. Gumilevskii, Similarity and decay laws of wakes with zero momentum and angular momentum, Fluid Dyn., 1993, Vol. 28, No. 5, P. 619–623.ADSCrossRefGoogle Scholar
  3. 3.
    J. Piquet, Turbulent flows. Models and Physics, Springer-Verlag, Berlin, Heidelberg, 1999.CrossRefzbMATHGoogle Scholar
  4. 4.
    G.G. Chernykh, A.G. Demenkov, and V.A. Kostomakha, Numerical model of a swirling momentumless turbulent wake, Russ. J. Numer. Anal. Math. Modelling, 1998, Vol. 13, No. 4, P. 279–288.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    V.A. Kostomakha and N.V. Lesnova, Turbulent swirling wake behind a sphere with complete or partial drag compensation, J. Appl. Mech. Tech. Phys., 1995, Vol. 36, No. 2, P. 226–233.ADSCrossRefGoogle Scholar
  6. 6.
    N.V. Gavrilov, A.G. Demenkov, V.A. Kostomakha, and G.G. Chernykh, Experimental and numerical modeling of the turbulent wake of a self-propelled body, J. Appl. Mech. Tech. Phys., 2000, Vol. 41, No. 4, P. 619–627.ADSCrossRefGoogle Scholar
  7. 7.
    G.G. Chernykh, A.G. Demenkov, and V.A. Kostomakha, Swirling turbulent wake behind a self-propelled body, Int. J. Comput. Fluid Dyn., 2005, Vol. 19, No. 5, P. 399–408.CrossRefzbMATHGoogle Scholar
  8. 8.
    M.-H. Lu and A.I. Sirviente, Numerical study of the momentumless wake of an axisymmetric body, in: 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10–13 January 2005, Reno, Nevada. AIAA Paper No. 2005-1109.Google Scholar
  9. 9.
    N.V. Alekseenko and V.A. Kostomakha, Experimental study of an axisymmetric nonimpulsive turbulent jet, J. Appl. Mech. Tech. Phys., 1987, Vol. 28, No. 1, P. 60–64.ADSCrossRefGoogle Scholar
  10. 10.
    N.N. Fedorova and G.G. Chernykh, About numerical simulation of a momentumless wake behind a sphere, Modelirovanie v Mekhanike, 1992, Vol. 6 (23), No. 1, P. 129–140.Google Scholar
  11. 11.
    A.G. Demenkov and G.G. Chernykh, On a self-similar decay of a swirling turbulent wake past a self-propelled body, in: Urgent Problems of Applied Mathematics, Informatics, and Mechanics Devoted to 70th Anniversary of Victory in the Great Patriotic War, Voronezh, Russia, 2015, P. 109–111.Google Scholar
  12. 12.
    W. Rodi, A new algebraic relation for calculating the Reynolds stresses, ZAMM, 1976, Vol. 56, P. 219–221.ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    B.E. Launder and A. Morse, Numerical prediction of axisymmetric free shear flows with a Reynolds stress closure, in: F. Durst, B.E. Launder, F.W. Schmidt, and J.H. Whitelaw (Eds.), Turbulent Shear Flows I, Springer, Berlin, Heidelberg, 1979, P. 279–294.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Kutateladze Institute of Thermophysics SB RASNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Institute of Computational Technologies SB RASNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia
  5. 5.Siberian State University of Telecommunications and Information SciencesNovosibirskRussia

Personalised recommendations