Advertisement

Thermophysics and Aeromechanics

, Volume 23, Issue 5, pp 645–655 | Cite as

Investigation of annular supersonic inlets with isentropic compression

  • V. M. GalkinEmail author
  • V. I. Zvegintsev
  • D. A. Vnuchkov
Article

Abstract

A technique for designing the supersonic annular inlets with isentropic deceleration surfaces is considered. The contour of an isentropic supersonic nozzle constructed by the method of characteristics for an inviscid gas flow with given uniform parameters at the inlet and at the outlet is used as the basic configuration of the inlet. The reversed flow of a viscous gas is computed with the aid of numerical techniques in the contour under consideration and the real operational characteristics of the obtained inlet of a fixed geometry are determined in the range of the conditions of its application. In the process of computations, the minimum cross-sectional sizes are selected, which ensure the inlet start without a detached bow shock at the entrance.

Key words

nozzle the method of characteristics axisymmetric supersonic flow ideal gas reversed flow the inlet start viscous flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Busemann, Die achsensymmetrische kegelig Oberschallströmung, Luftfahrtforschung, 1942, Bd. 19, H. 4, S. 137–144.MathSciNetGoogle Scholar
  2. 2.
    S. Molder and E.J. Szpiro, Busemann inlet for hypersonic speeds, J. Spacecraft, 1966, Vol. 3, No. 8, P. 1303–1304.CrossRefGoogle Scholar
  3. 3.
    V.I. Zvegintsev and V.A. Safonov, Research of characteristics of isentropic air intake and ducted isentropic air intake, Frontiers in Aerospace Engng, 2015, Vol. 4, No. 2, P. 49–55.CrossRefGoogle Scholar
  4. 4.
    D. van Wie and S. Molder, Application of Busemann inlet designs for flight at hypersonic speeds, in: Aerospace Design Conf., 1992, AIAA Paper 92–1210.Google Scholar
  5. 5.
    V. Ramasubramanian, R. Starkey, and M. Lewis, Numerical simulations of Busemann hypersonic inlets at finite flight angles, in: 26th AIAA Applied Aerodynamics Conference, Hawaii, Aug. 18–21, 2008. AIAA Paper 2008-7497.Google Scholar
  6. 6.
    P.C. Walsh, R.B. Tahir, and S. Molder, Boundary-layer correction for the Busemann hypersonic air inlet, Canadian Aeronautics and Space J., 2003, Vol. 49, No. 1, P. 11–17.ADSCrossRefGoogle Scholar
  7. 7.
    A.M. Blokhin, L.M. Vetlutskaya, B.I. Gutov, V.N. Dolgov, V.V. Zatoloka, and V.V. Shumsky, Convergent inlet diffusers and the Busemann axisymmetric supersonic conical flows, in: Aerophysical Research (a collection of scientific works), ITAM SB of the USSR Acad. Sci., Novosibirsk, 1972, P. 105–108.Google Scholar
  8. 8.
    B.I. Gutov and V.V. Zatoloka, Convergent inlet diffusers with the initial shock and additional external compression, in: Aerophysical Research (a collection of scientific works), ITAM SB of the USSR Acad. Sci., Novosibirsk, 1973, P. 64–66.Google Scholar
  9. 9.
    B.I. Gutov and V.V. Zatoloka, Hypersonic axisymmetric compression flows in the ducts without a central body, in Questions of Gas Dynamics, ITAM SB of the USSR Acad. Sci., Novosibirsk, 1975, P. 213–216.Google Scholar
  10. 10.
    V.I. Zvegintsev, Experimental investigation of the thrust and aerodynamic characteristics of the operating ramjet in the impulse hot-shot tunnel, Sibirskii Fiziko-Tekhnicheskii Zhurnal, 1993, No. 2, P. 37–40.Google Scholar
  11. 11.
    Yu.P. Goonko and I.I. Mazhul, Design of supersonic three-dimensional inlets using two-dimensional isentropic compression flow, Thermophysics and Aeromechanics, 2011, Vol. 18, No. 1, P. 87–100.CrossRefGoogle Scholar
  12. 12.
    Yu.P. Gounko and I.I. Mazhul, Gasdynamic design of a two-dimensional supersonic inlet with the increased flow rate factor, Thermophysics and Aeromechanics, 2012, Vol. 19, No. 1, P. 363–379.ADSCrossRefGoogle Scholar
  13. 13.
    O.N. Katskova, Computation of annular supersonic nozzles and diffusers, in: Computational Mathematics: a Collection of Works, Computing Center of the USSR Acad. Sci., Moscow, 1958. No. 3, P. 111–129.Google Scholar
  14. 14.
    U.G. Pirumov and V.A. Rubtsov, Calculation of axisymmetric supersonic annular nozzles, Izv. Akad. Nauk SSSR, Mekh. Mashinostr., 1961, No. 6, P. 15–25.Google Scholar
  15. 15.
    N.I. Tillyaeva and E.Ya. Shironosova, On profiling supersonic nozzles to achieve uniform flow in the annular exit, Fluid Dyn., 1995, Vol. 30, No. 2, P. 331–333.ADSCrossRefGoogle Scholar
  16. 16.
    A.N. Kraiko and N.I. Tillyaeva, Contouring spike nozzles and determining the optimal direction of their primary flows, Fluid Dyn., 2007, Vol. 42, No. 2, P. 321–329.ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Theory of Optimum Aerodynamic Shapes, A. Miele (Ed.), Academic Press, New York, 1965.Google Scholar
  18. 18.
    Yu.S. Volkov and V.M. Galkin, On the choice of approximations in direct problems of nozzle design, Comp. Math. Math. Phys., 2007, Vol. 47, No. 5, P. 923–936.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    V.M. Galkin and V.I. Zvegintsev, Forming of ducted axisymmetric supersonic air inlets, Izv. Tomsk Polytechnic Univ., 2015, Vol. 326, No. 4, P. 117–124.Google Scholar
  20. 20.
    V.M. Galkin, D.A. Vnuchkov, and V.I. Zvegintsev, Gas-dynamic design of an axisymmetric tunnel air inlet with isentropic compression, J. Appl. Mech. Tech. Phys., 2015, Vol. 56, No. 5, P. 831–837.ADSCrossRefGoogle Scholar
  21. 21.
    V.M. Galkin, Representation of consistency conditions on characteristics, Sibirskii Zhurn. Industr. Matem., 2015, Vol. 18, No. 2, P. 48–51.MathSciNetzbMATHGoogle Scholar
  22. 22.
    D. van Wie, F.T. Kwok, and R.F. Walsh, Starting characteristics of supersonic inlets, AIAA Paper 96-2914.Google Scholar
  23. 23.
    C.A. Trexler, Inlet starting predictions for sidewall-compression scramjet inlets, AIAA Paper 88-3257.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. M. Galkin
    • 1
    Email author
  • V. I. Zvegintsev
    • 2
  • D. A. Vnuchkov
    • 2
  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Khristianovich Institute of Theoretical and Applied Mechanics SB RASNovosibirskRussia

Personalised recommendations