Thermophysics and Aeromechanics

, Volume 23, Issue 5, pp 629–638 | Cite as

Effect of the surface roughness of blunt cone forebody on the position of laminar-turbulent transition

  • D. A. BountinEmail author
  • Yu. V. Gromyko
  • A. A. Maslov
  • P. A. Polivanov
  • A. A. Sidorenko


In the present paper, data on the effect of the surface roughness of blunt cone forebody on the position of laminar-turbulent transition are reported. The study was carried out under freestream Mach 5.95. It was found that the roughness position plays a substantial role in the transition process. Critical Reynolds numbers at which the laminar-turbulent transition occurs on the nose-tip of the model were identified. For the first time, hysteresis in transition position was observed.


hypersonic boundary layer laminar-turbulent transition surface roughness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Stetson, E. Thompson, J. Donaldson, and L. Siler, Laminar boundary layer stability experiments on a cone at Mach 8. Pt. 2: Blunt Cone, AIAA Paper, 1984, No. 84–006.Google Scholar
  2. 2.
    S.P. Schneider, Hypersonic laminar instability on round cones near zero angle of attack, AIAA Paper, 2001, No. 2001–0206.CrossRefGoogle Scholar
  3. 3.
    A.A. Maslov, A.N. Shiplyuk, D.A. Bountin, and A.A. Sidorenko, Mach 6 boundary-layer stability experiments on sharp and blunted cones, J. Spacecraft and Rockets, 2006, Vol. 43, No. 1, P. 71–76.ADSCrossRefGoogle Scholar
  4. 4.
    E.A. Aleksandrova, A.V. Novikov, S.V. Ustyuzhnikov, and A.V. Fedorov, Experimental study of the laminarturbulent transition on a blunt cone, J. Appl. Mech. Tech. Phys., 2014, Vol. 55, No. 3, P. 375–385.ADSCrossRefGoogle Scholar
  5. 5.
    A.J. Laderman, Effect of surface roughness on blunt body boundary-layer transition, J. Spacecraft and Rockets, 1977, Vol. 14, No. 4, P. 253–255.ADSCrossRefGoogle Scholar
  6. 6.
    R.G. Batt and H.H. Legner, A review of roughness-induced nose tip transition, AIAA J., 1983, Vol. 21, No. 1, P. 7–22.ADSCrossRefGoogle Scholar
  7. 7.
    D.C. Reda, Review and synthesis of roughness-dominated transition correlations for reentry applications, J. Spacecraft and Rockets, 2002, Vol. 39, No. 2, P. 161–167.ADSCrossRefGoogle Scholar
  8. 8.
    W.J. Cook and E.J. Felderman, Reduction of data from thin film heat transfer gauges: a concise numerical technique, AIAA J., 1966, Vol. 4, No. 3, P. 561–562.ADSCrossRefGoogle Scholar
  9. 9.
    I.I. Yurchenko, I.N. Karakotin, and A.S. Kudinov, The turbulent-laminar transition on the rocket surface during the injection, Machines and Plants: Design and Exploiting (electronic journal), Bauman Moscow State Technical University, 2014, No. 9, P. 88–105.Google Scholar
  10. 10.
    S.V. Kirilovskiy and T.V. Poplavskaya, Effect of a single roughness element on wave processes in the boundary layer on a blunted cone, XVIII ICMAR, Perm, Russia, June 27–July 3, 2016, P. 96–98.Google Scholar
  11. 11.
    D.A. Bountin, Yu.V. Gromyko, A.A. Maslov, P.A. Polivanov, and A.A. Sidorenko, On the determination of the position of laminar-turbulent transition in boundary layer by optical methods, Thermophysics and Aeromechanics, 2015, Vol. 22, No. 6, P. 767–770.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. A. Bountin
    • 1
    Email author
  • Yu. V. Gromyko
    • 1
  • A. A. Maslov
    • 1
  • P. A. Polivanov
    • 1
  • A. A. Sidorenko
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics SB RASNovosibirskRussia

Personalised recommendations