Thermophysics and Aeromechanics

, Volume 22, Issue 1, pp 49–60 | Cite as

Hydrodynamics and heat transfer in a laminar flow of viscoelastic fluid in a flat slot channel

  • D. V. Ananyev
  • G. R. Halitova
  • E. K. Vachagina
Article
  • 73 Downloads

Abstract

Results of the numerical study of hydrodynamics and heat transfer in a laminar flow of viscoelastic fluid in a flat slot channel are presented in the present paper. The model of nonlinear viscoelastic fluid of Phan-Thien—Tanner is used to describe the viscoelastic properties of fluid. The solution to the stated problem by software package “COMSOL Multiphysics” is considered. The method of solution is verified, and results are compared with data of the other authors. It is determined that in the flow of viscoelastic fluid in a flat slot channel, the maximal contribution of heating due to dissipation is approximately 7–8 %.

Key words

hydrodynamics heat transfer flat slot channel laminar flow mathematical modeling Phan-Thien—Tanner model viscoelastic fluid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.M.H. Verbeeten, G.W.M. Peters, and F.P.T. Baaijens, Viscoelastic analysis of complex polymer melt flows using the eXtended Pom-Pom model, J. Non-Newtonian Fluid Mech., 2002, Vol. 108, P. 301–326.CrossRefMATHGoogle Scholar
  2. 2.
    T.D. Lord, L. Scelsi, D.G. Hassell, and M.R. Mackley, The matching of 3D Rolie-Poly viscoelastic numerical simulation with experimental polymer melt flow within a slit and cross-slot geometry, J. Rheol., 2010, Vol. 54, No. 2, P. 355–373.CrossRefADSGoogle Scholar
  3. 3.
    N. Phan-Thien and R.I. Tanner, A new constitutive equation derived from the concept of deformation-dependent tensorial mobility, J. Non-Newtonian Fluid Mech., 1977, Vol. 211, P. 353–365.CrossRefGoogle Scholar
  4. 4.
    M.A. Alves, F.T. Pinho, and P.J. Oliveira, Study of steady pipe and channel flows of a single-mode Phan-Thien—Tanner fluid, J. Non-Newtonian Fluid Mech., 2001, Vol. 101, P. 55–76.CrossRefMATHGoogle Scholar
  5. 5.
    P.J. Oliveira and F.T. Pinho, Analytical solution for fully developed channel and pipe flow of Phan-Thien—Tanner fluids, J. Fluid Mech., 1999, Vol. 387, P. 271–280.CrossRefADSMATHMathSciNetGoogle Scholar
  6. 6.
    L.L. Ferrás, J.M. Nóbrega, and F.T. Pinho, Analytical solutions for channel flow of Phan-Thien—Tanner and Giesekus fluids under slip, J. Non-Newtonian Fluid Mech., 2012, Vol. 171, P. 97–105.CrossRefGoogle Scholar
  7. 7.
    D.O.A. Cruz, F.T. Pinho, and P.J. Oliveira, Analytical solutions for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution, J. Non-Newtonian Fluid Mech., 2005, Vol. 132, P. 28–35.CrossRefMATHGoogle Scholar
  8. 8.
    R.I. Tanner and S. Nasseri, Simple constitutive models for linear and branched polymers, J. Non-Newtonian Fluid Mech., 2003, Vol. 116, P. 1–17.CrossRefMATHGoogle Scholar
  9. 9.
    W.M. Brondani, H.T. Coradin, and A.T. Franco, Numerical study of a PTT viscoelastic fluid flow through a concentric annular, in: 19th Int. Congress of Mechanical Engng, November 5–9, 2007, Brasilia, DF.Google Scholar
  10. 10.
    A. Bogaerds, Stability Analysis of Viscoelastic Flow, Technische Universiteit Eindhoven, Eindhoven, 2002.Google Scholar
  11. 11.
    P.J. Oliveira, Asymmetric flows of viscoelastic fluids in symmetric planar expansion geometries, J. Non-Newtonian Fluid Mech., 2003, Vol. 114, P. 33–63.CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. V. Ananyev
    • 1
  • G. R. Halitova
    • 1
  • E. K. Vachagina
    • 1
  1. 1.Research Center for Power Engineering ProblemsKazan Scientific Center of RASKazanRussia

Personalised recommendations