Structure parameters and structure sensitive properties of Sn0.739Pb0.261 melt

  • V. M. Sklyarchuk
  • Yu. A. Plevachuk
  • A. S. Yakimovich
  • I. I. Shtablavy
  • S. V. Stankus
  • R. A. Khairulin
Article

Abstract

Structure, interdiffusion, and dynamic viscosity of eutectic Sn-Pb melt have been experimentally investigated in a wide temperature range. On the basis of the obtained data on the position and form of the first maximum of the structure factor in the framework of the hard sphere model, values of sphere packing index and sphere diameter have been determined for the melt at 470 and 570 K. Correlations resulting from the model of hard spheres served to calculate coefficients of dynamic viscosity and interdiffusion of liquid alloy. Besides, temperature dependence of dynamic viscosity has been calculated with the use of thermodynamic approximation of Kozlov — Romanov — Petrov. Calculated values of the properties have been compared with experimental data.

Key words

structure factor interdiffusion viscosity Sn-Pb eutectic melt 

References

  1. 1.
    K. Bae, A.F. Sprecher, H. Conrad, and D.Y. Jung, Fatigue of 63Sn-37Pb solder used in electronic packaging, in: Proc. Inter. Symp. on Testing and Failure Analysis. Materials Park, OH, 1988, P. 53–61.Google Scholar
  2. 2.
    E.V. Kalashnikov, Thermodynamically stable states in eutectic systems, Tech. Phys., 1997, Vol. 42, No. 4, P. 330–335.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Yu. Plevachuk, V. Sklyarchuk, A. Yakymovych, B. Willers, and S. Eckert, Electronic properties and viscosity of liquid Pb-Sn alloys, J. Alloys. Comp., 2005, Vol. 394, P. 63–68.CrossRefGoogle Scholar
  4. 4.
    U. Dahlborg, M. Calvo-Dahlborg, P. Popel, and V. Sidorov, Structure and properties of some glassforming liquid alloys, Europ. Phys. J. B, 2000, Vol. 14, P. 639–648.ADSCrossRefGoogle Scholar
  5. 5.
    X.-F. Li, F.-Q. Zu, H.-F. Ding, J. Yu, L.-J. Liu, Q. Li, and Y. Xi, Anomalous change of electrical resistivity with temperature in liquid Pb-Sn alloys, Physica B, 2005, Vol. 358, P. 126–131.ADSCrossRefGoogle Scholar
  6. 6.
    Wu Yuqin, Bian Xiufang, Zhao Yan, Li Xuelian, Zhang Yanning, Tian Yongsheng, and Lu Xiaoqian, Effect of the roughness of crucible on viscosity of liquid Pb38.1Sn61.9 alloy, Materials Letters A, 2008, Vol. 372, P. 3868–3873.Google Scholar
  7. 7.
    L.C. Prasad and A. Mikula, Role of surface properties on the wettability of Sn-Pb-Bi solder alloys, J. Alloys Comp., 1999, Vol. 282, P. 279–285.CrossRefGoogle Scholar
  8. 8.
    F.Q. Zu, Z.G. Zhu, B. Zhang, Y. Feng, and J.P. Shui, Post-melting anomaly of Pb-Bi alloys observed by internal friction technique, J. Phys.: Condens. Matter., 2001, Vol. 13, P. 11435–11442.ADSCrossRefGoogle Scholar
  9. 9.
    R. Kaplow and B.L. Averbach, X-ray diffractometer for the study of liquid structures, Rev. Sci. Instr. 1963, Vol. 34, P. 579–581.ADSCrossRefGoogle Scholar
  10. 10.
    D.T. Cromer and J.T. Waber, Scattering factors computed from relativistic Dirac-Slater wave functions, Acta Cryst., 1965, Vol. 18, P. 104–108.CrossRefGoogle Scholar
  11. 11.
    W. Jost, Diffusion in Solids, Liquids, Gases, Academic Press, N.Y., 1960.Google Scholar
  12. 12.
    S.V. Stankus and P.V. Tyagelskiy, Anomalies of thermal expansion of semimetals in liquid state, Rasplavy, 1991, No. 2, P. 14–19.Google Scholar
  13. 13.
    R.A. Khairulin, S.V. Stankus, and P.P. Bezverkhy Study of the binary diffusion in liquid Sn-Pb and Al-Ge alloys by measurement of the melt concentration, J. Alloys Comp., 2000, Vol. 312, P. 211–218.CrossRefGoogle Scholar
  14. 14.
    Yu. Plevachuk, V. Sklyarchuk, A. Yakymovych, and I. Shtablavyi, Methods and facilities for thermophysical and structure investigations of liquid metallic alloys. EPM. 2009, in: Proc. Forschungszentrum Dresden-Rossendorf, 2009, P. 415–418.Google Scholar
  15. 15.
    Y. Waseda, The Structure of Non-Crystalline Materials, McGraw-Hill, N.Y., 1980.Google Scholar
  16. 16.
    M. Klassen and J.R. Cahoon, Interdiffusion of Sn and Pb in liquid Pb-Sn alloys, Metall. Mater. Trans A., 2000, Vol. 31, P. 1343–1352.CrossRefGoogle Scholar
  17. 17.
    E. Gebhardt and K. Kostlin, Über die Eigenschaften metallischer Schmelzen. XVI. Die innere Reibung flüssiger Blei-Zinn- und Blei-Antimon-Legierungen, Z. Metallkd., 1957, Bd. 48, S. 636–641.Google Scholar
  18. 18.
    Yu.G. Poltavtsev, Structure of Semicontuctor Melts, Metallurgy, Moscow, 1984.Google Scholar
  19. 19.
    A.A. Polyakov, E.M. Kern, and N.A. Vatolin, Determination of packing index and viscosity of hard spheres on the first maximum of structure factor, Rasplavy, 1992, No. 2, P. 24–28.Google Scholar
  20. 20.
    M. Shimoji, Atomic transport properties, Chapter 2.4 in Handbook of Thermodynamic and Transport Properties of Alkali Metals, ed. R.X. Ohse. Blackwell, Oxford, 1985. P. 61–72.Google Scholar
  21. 21.
    L.Ya. Kozlov, L.M. Romanov, and N.N. Petrov, Prediction of multicomponent metal melts viscosity, Izv. Vyssh. Uch. Zav., Chernaya Metallurgiya, 1983, No. 3, P. 7–11.Google Scholar
  22. 22.
    O.J. Kleppa, A new high-temperature reaction calorimeter. The heat of mixing of liquid lead-tin alloys, J. Phys. Chem., 1955, Vol. 59, P. 175–181.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. M. Sklyarchuk
    • 1
  • Yu. A. Plevachuk
    • 1
  • A. S. Yakimovich
    • 1
  • I. I. Shtablavy
    • 1
  • S. V. Stankus
    • 2
  • R. A. Khairulin
    • 2
  1. 1.Ivan Franko Lviv National UniversityLvivUkraine
  2. 2.Kutateladze Institute of Thermophysics SB RASNovosibirskRussia

Personalised recommendations