Thermophysics and Aeromechanics

, Volume 17, Issue 1, pp 1–14 | Cite as

The mechanism of heat transfer in nanofluids: state of the art (review). Part 1. Synthesis and properties of nanofluids



Here is the review of experimental and theoretical results on the mechanism of heat transfer in nanofluids. A wide scope of problems related to the technology of nanofluid production, experimental equipment, and features of measurement methods is considered. Experimental data on heat conductivity of nanofluids with different concentrations, sizes, and material of nanoparticles are presented. Results on forced and free convection in laminar, and turbulent flows are analyzed. The available models of physical mechanisms of heat transfer intensification and suppression in nanofluids are presented. There are significant divergences in data of different researchers; possible reasons for this divergence are analyzed.

Key words

nanofluid thermal conductivity heat transfer free and forced convection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Akoh, Y. Tsukasaki, S. Yatsuya, and A. Tasaki, Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate, J. Crystal Growth, 1978, Vol. 45, P. 495–500.CrossRefADSGoogle Scholar
  2. K. Asaka, H. Nakahara, and Y. Saito, Nanowelding of a multiwalled carbon nanotube to metal surface and its electron field emission properties, Appl. Phys. Lett., 2008, Vol. 92, P. 023114.CrossRefADSGoogle Scholar
  3. M.J. Assael, C.F. Chen, I. Metaxa, and W.A. Wakeham, Thermal conductivity of suspensions of carbon nanotubes in water, Int. J. Thermophysics, 2004, Vol. 25, P. 971–985.CrossRefADSGoogle Scholar
  4. M. Biercuk, M. Llaguno, M. Radosavljevic, J. Hyun, A. Johnson, and J. Fischer, Carbon nanotube composites for thermal management, Appl. Phys. Lett., 2002, Vol. 80, No. 15, P. 2767–2769.CrossRefADSGoogle Scholar
  5. M. Chandrasekar and S. Suresh, A Review on the mechanisms of heat transfer in nanofluids, Heat Transfer Engng., 2009, Vol. 30, No. 14, P. 1136–1150.CrossRefADSGoogle Scholar
  6. S.U.S. Choi, Nanofluids: A new field of scientific research and innovative applications, Heat Transfer Engng., 2008, Vol. 29, No. 5, P. 429–431.CrossRefADSGoogle Scholar
  7. S.U.S. Choi, Nanofluids: from vision to reality through research, J. Heat Transfer, 2009, Vol. 131, P. 033106-1–033106-9.CrossRefGoogle Scholar
  8. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, Anomalous thermal conductivity enhancement in nano-tube suspensions, Appl. Phys. Lett., 2001, Vol. 79, P. 2252–2254.CrossRefADSGoogle Scholar
  9. C.H. Chon and K.D. Kihm, Thermal conductivity enhancement of nanofluids by brownian motion, ASME J. Heat Transfer, 2005, b, Vol. 127, P. 810.CrossRefGoogle Scholar
  10. C.H. Chon, K.D. Kihm, S.P. Lee, and S.U.S. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett., 2005, a, Vol. 87, P. 153107.CrossRefADSGoogle Scholar
  11. M. Chopkar, P.K. Das, and I. Manna, Synthesis and Characterization of Nanofluid for Advanced Heat Transfer Applications, Scr. Mater, 2006, Vol. 55, P. 549–552.CrossRefGoogle Scholar
  12. S.K. Das, S.U.S. Choi, and H. Patel, Heat transfer in nanofluids. A Review, Heat Transfer Engng., 2006, Vol. 20, No. 10, P. 3–19.CrossRefADSGoogle Scholar
  13. S.K. Das, S.U.S. Choi, W. Yu, and T. Pradeep, Nanofluids Science and Technology, Wiley-Interscience, New Jersey, 2007, 397 p.CrossRefGoogle Scholar
  14. S.K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 2003, Vol. 125, P. 567–574.CrossRefGoogle Scholar
  15. Y.L. Ding, H. Alias, D.S. Wen, and R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, 2006, Vol. 49, P. 240–250.CrossRefGoogle Scholar
  16. Y.L. Ding, H. Chen, L. Wang, C.-Y. Yang, Y. He, W. Yang, W.P. Lee, L. Zhang, and R. Huo, Heat Transfer Intensification Using Nanofluids, Powder and Particle, 2007, No. 25, P. 23–36.Google Scholar
  17. J.A. Eastman, S.U.S. Choi, Li S., L.J. Thompson, and S. Lee, Enhanced thermal conductivity through the development of nanofluids, in: Proc. Mater. Res. Soc. Symp. Materials Res. Soc., Pittsburgh, PA, USA, Boston, MA, USA, 1997, Vol. 457, P. 3–11.Google Scholar
  18. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thomson, Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 2001, Vol. 78, P. 718–720.CrossRefADSGoogle Scholar
  19. J.A. Eastman, S.R. Phillpot, S.U.S. Choi, and P. Keblinski, Thermal transport in nanofluids, Ann. Rev. Mater. Res., 2004, Vol. 34, P. 219–246.CrossRefADSGoogle Scholar
  20. A.V. Eletskii, Transport properties of carbon nanotubes, Physics Uspekhi, 2009, Vol. 179, No. 3, P. 209–223.ADSGoogle Scholar
  21. W. Evans, J. Fish, and P. Keblinski, Role of Brownian motion hydrodynamics on nanofluids thermal conductivity, Appl. Phys. Lett., 2006, Vol. 88, P. 093116.CrossRefADSGoogle Scholar
  22. W. Evans, R. Prasher, J. Fish, P. Meakin, and P. Phelan, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids, Int. J. Heat Mass Transfer, 2008, Vol. 51, P. 1431–1438.MATHCrossRefGoogle Scholar
  23. J.E. Fischer and A.T. Johnson, Electronic properties of carbon nanotubes, Current Opinition in Solid State and Material Sci., 1999, Iss. 1, P.28–33.Google Scholar
  24. L. Gao, X. Zhou, and Y.L. Ding, Effective thermal and electrical conductivity of carbon nanotube composites, Chem. Phys. Lett., 2007, Vol. 434, P. 297–300.CrossRefADSGoogle Scholar
  25. R.L. Hamilton and O.K. Crosser, Thermal conductivity of heterogeneous two component systems, I & EC Fundamentals, 1962, Vol. 1, No. 3, P. 187–191.CrossRefGoogle Scholar
  26. Y.R. He, Y. Jin, H.S. Chen, Y.L. Ding, D.Q. Cang, and H.L. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer, 2007, Vol. 50, P. 2272–2281.MATHCrossRefGoogle Scholar
  27. J. Hone, M. Whitney, C. Pisconi, and A. Zett, Thermal conductivity of single-walled carbon nanotubes, Phys. Rev., B 25, 1999, P. R2514–R2516.CrossRefADSGoogle Scholar
  28. K.S. Hong, T.K. Hong, and H.S. Yang, Thermal Conductivity of Fe Nanofluids Depending on Cluster Size of Nanoparticles, Appl. Phys. Lett., 2006, Vol. 88, P. 031901.CrossRefADSGoogle Scholar
  29. T.-K. Hong, H.-S. Yang, and C.J. Choi, Study of the enhanced thermal conductivity of Fe nanofluids, J. Appl. Phys., 2005, Vol. 97, No. 6, P. 1–4.Google Scholar
  30. S. Jana, A. Salehi-Khojin, and W.-H. Zhong, Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives, Thermochim. Acta., 2007, Vol. 462, No. 1–2, P. 45–55.CrossRefGoogle Scholar
  31. H.U. Kang and S.H. Kim, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp.Heat Transfer, 2006, Vol. 19, P. 181–191.CrossRefADSGoogle Scholar
  32. P. Keblinski, S.R. Phillpot, S.U.S. Choi, and J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 2002, Vol. 45, P. 855–863.MATHCrossRefGoogle Scholar
  33. P. Keblinski, J.A. Eastman, and D.G. Cahill, Nanofluids for thermal transport, Materials Today, 2005, June Iss., P. 36–44.Google Scholar
  34. P. Keblinski, R. Prasher, and J. Eapen, Thermal conductance of nanofluids: is the controversy over? J. Nanoparticle Research, 2008, Vol. 10, No. 7, P. 1089–1097.CrossRefGoogle Scholar
  35. P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Phys. Rev. Lett., 2001, Vol. 87, P. 215502.CrossRefADSGoogle Scholar
  36. S.H. Kim, S.R. Choi, and D. Kim, Thermal conductivity of metal ? oxide nanofluids: particle size dependence and effect of laser irradiation, ASME J. Heat Transfer, 2007, Vol. 129, P. 298–307.CrossRefMathSciNetGoogle Scholar
  37. D.H. Kumar, H.E. Patel, V.R.R. Kumar, T. Sundararajan, T. Pradeep, and S.K. Das, Model for heat conduction in nanofluids, Physical Review Letter, 2004, Vol. 93, P. 144301.CrossRefADSGoogle Scholar
  38. S. Lee, S. Choi, S. Li, and J. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 1999, Vol. 121, P. 280–289.CrossRefGoogle Scholar
  39. C.H. Li and G.P. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys., 2006, Vol. 99, P. 084314.CrossRefADSGoogle Scholar
  40. C.H. Li and G.P. Peterson, Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids), Int. J. Heat Mass Transfer, 2007, Vol. 50, P. 4668–4677.MATHCrossRefGoogle Scholar
  41. M.-S. Liu, Lin M. Ching-Cheng, I.T. Huang, and C.-C. Wang, Enhancement of thermal conductivity with carbon nanotube for nanofluids, Int. Comm. in Heat and Mass Transfer, 2005, Vol. 32, No. 9, P. 1202–1210.CrossRefGoogle Scholar
  42. M.-S. Liu, Lin M. Ching-Cheng, C.Y. Tsai, and C.-C. Wang, Enhance of thermal conductivity with Cu for nanofluids using chemical reduction method, Inter. J. Heat Mass Transfer, 2006, Vol. 49, P. 3028–3033.CrossRefGoogle Scholar
  43. C.-H. Lo, T.-T. Tsung, and L.-C. Chen, Ni nano-magnetic fluid prepared by submerged arc nanosynthesis system (sanss), JSME Int. J., Ser. B: Fluids and Thermal Engng., 2006, Vol. 48, No. 4, P. 750–755.CrossRefADSGoogle Scholar
  44. C.-H. Lo, T.-T. Tsung, and L.-C. Chen, Shape-controlled synthesis of Cu based nanofluid using submerged arc nanoparticle synthesis system (SANSS), J. Crystal Growth, 2005, Vol. 277, No. 1–4, P. 636–642.CrossRefADSGoogle Scholar
  45. S.M.S. Murshed, K.C. Leong, and C. Yang, Enhanced thermal conductivity of TiO2—water based nanofluids, Int. J. of Thermal Sciences, 2005, Vol. 44, No. 4, P. 367–373.CrossRefGoogle Scholar
  46. C.W. Nan, Z. Shi, and Y. Lin, A simple model for thermal conductivity of carbon nanotube-based composites, Chem. Phys. Lett., 2003, Vol. 375, P. 666–669.CrossRefADSGoogle Scholar
  47. M.A. Pakhomov, M.V. Protasov, V.I. Terekhov, and A.Yu. Varaksin, Experimental and numerical investigation of downward gas-dispersed turbulent pipe flow, Int. J. Heat Mass Transfer, 2007, Vol. 50, P. 2107–2116.MATHCrossRefGoogle Scholar
  48. H.E. Patel, S.K. Das, T. Sundararajan, N.A. Sreekumaran, B.P. George, and T. Pradeep, Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett., 2003, Vol. 83, P. 2931–2933.CrossRefADSGoogle Scholar
  49. R. Prasher, P. Bhattacharya, and P.E. Phelan, Thermal conductivity of nanoscale colloidal solutions (nanofluids), Phys. Rev. Lett., 2005, Vol. 94, P. 025901.CrossRefADSGoogle Scholar
  50. R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski, Effect of aggregation on thermal conduction in colloidal nanofluids, Appl. Phys. Lett., 2006, Vol. 89, P. 143119.CrossRefADSGoogle Scholar
  51. P.A. Putnam, D.G. Cahill, P.V. Braun, Z. Ge, and R.G. Shimmin, Thermal conductivity of nanoparticle suspensions, J. Appl. Phys., 2006, Vol. 99, P. 084308-1–6.CrossRefADSGoogle Scholar
  52. V.Ya. Rudyak, A.A. Belkin, and G.V. Harlamov, Molecular dynamics simulation of nanoparticles diffusion in dense gases and fluids, J. Aeros. Sci., 2000, Vol. 31, Suppl. 1, P. S432–S433.CrossRefGoogle Scholar
  53. S. Shenogin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, Effect of chemical functionalization on thermal transport of carbon nanotube composites, Appl. Phys. Lett., 2004, a, Vol. 85, P. 2229–2231.CrossRefADSGoogle Scholar
  54. S. Shenogin, L.P. Xue, R. Ozisik, P. Keblinski, and D.G. Cahill, Role of thermal boundary resistance on the heat flow in carbon nanotube composites, J. Appl. Phys., 2004, b, Vol. 95, P. 8136–8144.CrossRefADSGoogle Scholar
  55. A.V. Simakin, V.V. Voronov, and G.A. Shafeev, Formation of nanoparticles at laser ablation of solid bodies in fluids, Trans. Prokhorov Inst. Gen Phys. RAS, 2004, Vol. 60, P. 83–107.Google Scholar
  56. M. Wagener, B.S. Murty, and B. Gunther, Preparation of metal nanosuspensions by high-pressure DC-sputtering on running fluids, S. Komarnenl, J.C. Parker, H.J. Wollenberger (Eds.), Nanocrystalline and Nanocomposite Materials II, Vol. 457, Materials Research Society, Pittsburgh, PA, 1997, P. 149–154.Google Scholar
  57. B.-X. Wang, L.-P. Zhou, and X.-F. Peng, A fractal model for predicting the effective thermal conductivity of fluid with suspension of nanoparticles, Int. J. of Heat and Mass Transfer, 2003, Vol. 46, P. 2665–2672.MATHCrossRefGoogle Scholar
  58. L. Wang and X. Wei, Nanofluids: synthesis, heat conduction, and extension, J. Heat Transfer, 2009, Vol. 131, P. 033102-1–033102-7.Google Scholar
  59. X. Wang, X. Xu, and S.U.S. Choi, Thermal conductivity of nanoparticle — fluid mixture, J. Thermophysics and Heat Transfer, 1999, Vol. 13, No. 4, P. 474–480.CrossRefGoogle Scholar
  60. X-Q. Wang and A.S. Mujumbar, Heat Transfer Characteristics of Nanofluids: a Review, Int. J. Thermal Sci., 2007, Vol. 46, P. 1–19.MATHCrossRefGoogle Scholar
  61. D.S. Wen and Y.L. Ding, Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids), J. Thermophysics and Heat Transfer, 2004, a, Vol. 18, No. 4, P. 481–485.CrossRefGoogle Scholar
  62. D.S. Wen and Y.L. Ding, Experiment investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer, 2004, b, Vol. 47, P. 5181–5188.CrossRefGoogle Scholar
  63. D.S. Wen and Y.L. Ding, Experimental investigation into the pool boiling heat transfer of aqueous based γ-Alumina nanofluids, J. of Nanoparticle Research, 2005, a, No. 7, P. 265–274.Google Scholar
  64. D.S. Wen and Y.L. Ding, Formulation of nanofluids for natural convective heat transfer applications, Int. J. of Heat and Fluid Flow, 2005, b, Vol. 26, P. 855–864.CrossRefGoogle Scholar
  65. D.S. Wen and Y.L. Ding, Natural convective heat transfer of suspensions of TiO2 nanoparticles (nanofluids), Transactions of IEEE on Nanotechnology, 2006, No. 5, P. 220–227.Google Scholar
  66. H. Xie, H. Lee, W. Youn, and M. Choi, Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, J. Appl. Phys., 2003, Vol. 94, No. 8, P. 4967–4971.CrossRefADSGoogle Scholar
  67. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. of Appl. Phys., 2002, a, Vol. 91, No. 7, P. 4568–4572.CrossRefADSGoogle Scholar
  68. H. Xie, J. Wang, T. Xi, and Y. Liu, Thermal conductivity of suspensions containing nanosized SiC particles, Int. J. Thermophysics, 2002, b, Vol. 23, P. 571–580.CrossRefGoogle Scholar
  69. Y. Xuan and Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Transfer, 2000, Vol. 21, P. 58–64.CrossRefGoogle Scholar
  70. L. Xue, P. Keblinski, S.R. Phillpot, S.U.S. Choi, and J.A. Eastman, Effect of fluid layering at the fluid — solid interface on thermal transport, Int. J. Heat Mass Transfer, 2004, Vol. 47, No. 19–20, P. 4277–4284.MATHCrossRefGoogle Scholar
  71. S. Yatsuya, Y. Tsukasaki, K. Yamauchi, and K. Mihama, Ultrafine particles produced by vacuum evaporation onto a running oil substrate (VEROS) and the modified method, J. Crystal Growth, 1984, Vol. 70, P. 533–535.CrossRefADSGoogle Scholar
  72. W. Yu and S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. of Nanoparticle Research, 2003, No. 5, P. 167–171.Google Scholar
  73. W. Yu, D.M. France, S.U.S. Choi, and J.L. Routbort, Review and Assessment of Nanofluid Technology for Transportation and Other Applications, Argonne National Laboratory, ANL/ESD/07-9, 2007, 78 p.Google Scholar
  74. X. Zhang, H. Gu, and M. Fujii, Effective thermal conductivity an thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, J. Appl. Phys., 2006, Vol. 100, No. 4, P. 044325.CrossRefADSGoogle Scholar
  75. X. Zhang, H. Gu, and M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Experimental Thermal and Fluid Sci., 2007, Vol. 31, No. 6, P. 593–599.CrossRefGoogle Scholar
  76. H. Zhu, Y. Lin, and Y. Yin, A novel one-step chemical method for preparation of copper nanofluids, J. Colloid and Interface Sci., 2004, Vol. 227, P. 100–103.CrossRefGoogle Scholar
  77. K.P. Zol’nikov, R.I. Kadyrov, I.I. Naumov, S.G. Psakh’e, G.E. Rudenskii, and V.M. Kuznetsov, Possible nonlinear heat pulse propagation of s in solids at Debye temperatures, Technical Phys. Lett., 1999, Vol. 25, No. 3, P. 230–232.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. I. Terekhov
    • 1
  • S. V. Kalinina
    • 1
  • V. V. Lemanov
    • 1
  1. 1.Kutateladze Institute of Thermophysics SB RASNovosibirskRussia

Personalised recommendations