Stratigraphy and Geological Correlation

, Volume 25, Issue 5, pp 479–491 | Cite as

Neoproterozoic complexes of the shelf cover of the Dzabkhan terrane basement in the Central Asian Orogenic Belt

  • I. K. Kozakov
  • A. B. Kuznetsov
  • Ch. Erdenegargal
  • E. B. Salnikova
  • I. V. Anisimova
  • Ju. V. Plotkina
  • A. M. Fedoseenko


The formation stages of high-grade metamorphic complexes and the related granitoids of the Dzabkhan terrane basement are considered. The age data (U–Pb method, TIMS) of zircons from the trondhjemite block of the eastern part of the Dzabkhan terrane, which is directly overlain by the dolomite sequence of the Tsagaan Oloom Formation, are given. Trondhjemites yield the U–Pb zircon age of 862 ± 3 Ma. In their structural position, they are assigned to typical postmetamorphic formations that determine the formation and cratonization of rocks of the host block. The geochronological study of trondhjemites gives grounds to distinguish fragments of the continental crust in the Dzabkhan terrane basement, the formation of which occurred at different periods of time: ∼860 and ∼790 Ma. Geological–geochronological and Sm‒Nd isotope–geochemical studies indicate that the Dzabkhan terrane basement is not a single block of the Early Precambrian continental crust, but a composite terrane, comprising Neoproterozoic ensialic and island-arc structural and compositional complexes. Correlation of Sr isotopic characteristics with the 87Sr/86Sr variation curve in the Neoproterozoic and Cambrian seawater shows that carbonate deposits accumulated at the eastern margin of the Dzabkhan terrane near the end of the Neoproterozoic, 700–550 Ma, and in the central part of the terrane in the Early Cambrian, 540–530 Ma.


Neoproterozoic U–Pb geochronology zircon granitoids Dzabkhan terrane Central Asian Orogenic belt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badarch, G., Cunningham, W.D., and Windley, B.F., A new terrane subdivision for Mongolia: implications for Phanerozoic crustal growth of Central Asia, Asian J. Earth Sci., 2002, vol. 21, pp. 87–110.CrossRefGoogle Scholar
  2. Bogdanova S.V., Pisarevskii S.A., and Li, Z. X., Assembly and breakup of Rodinia (some results of IGCP project 440), Stratigr. Geol. Correl., 2009, vol. 17, no. 3, pp. 259–274.CrossRefGoogle Scholar
  3. Bold, U., Smith, E.F., Rooney, A.D., et al., Neoproterozoic stratigraphy of the Zavkhan terrane of Mongolia: the backbone for Cryogenian and Early Ediacaran chemostratigraphic records, Am. J. Sci., 2016a, vol. 316, pp. 1–63.CrossRefGoogle Scholar
  4. Bold, U., Crowley, Ja.L., Smith, E.F., et al., Neoproterozoic to early Paleozoic tectonic evolution of the Zavkhan terrane of Mongolia: implications for continental growth in the Central Asian orogenic belt, Lithosphere, 2016b. doi 10.1130/L549.1Google Scholar
  5. Brasier, M.D., Shields, G., Kuleshov, V.N., and Zhegalo, E.A., Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–early Cambrian of southwest Mongolia, Geol. Mag., 1996, vol. 133, no. 1/4, pp. 445–485.CrossRefGoogle Scholar
  6. Condie, K.C., Continental growth during formation of Rodinia at 1.35–0.9 Ga, Gondwana Res., 2001, vol. 4, pp. 5–16.CrossRefGoogle Scholar
  7. Demoux, A., Kroner, A., Badarch, G., et al., Zircon ages from the Baydrag Block and the Bayankhongor Ophiolite Zone: time constraints on Late Neoproterozoic to Cambrian subduction- and accretion-related magmatism in Central Mongolia, J. Geol., 2009, vol. 117, pp. 377–397.CrossRefGoogle Scholar
  8. Geologicheskaya karta Mongol’skoi Narodnoi Respubliki. Masshtab 1: 200000, M-46-XXXV (The 1: 200000 Geological Map of the Mongolian People’s Republic), Moscow: Vsesoyuz. Eksp.–Import. Ob"ed. “Tekhnoeksport”, 1982 [in Russian].Google Scholar
  9. Geologicheskaya karta Mongol’skoi Narodnoi Respubliki. Masshtab 1: 200000, M-46-XXXVI (The 1: 200000 Geological Map of the Mongolian People’s Republic, M-46-XXXVI), Moscow: Vsesoyuz. Eksp.–Import. Ob”ed. “Tekhnoeksport”, 1982 [in Russian].Google Scholar
  10. Geologicheskaya karta Mongol’skoi Narodnoi Respubliki. Masshtab 1: 200000, L-47-I (The 1: 200000 Geological Map of the Mongolian People’s Republic, L-47-I), Moscow: Min. Geol. SSSR, Zarubezhgeologiya, 1982 [in Russian].Google Scholar
  11. Gibsher, A.S. and Khomentovskii, V.V., Section of the Tsagaan Oloom and Bayangol Vendian-Lower Cambrian formations of the Dzabkhan Zone of Mongolia, in Pozdnii dokembrii i rannii paleozoi Sibiri. Voprosy regional’noi stratigrafii (Late Precambrian and Early Paleozoic of Siberia. Problems of Regional Stratigraphy), Novosibirsk: IGG SOAN SSSR, 1990, pp. 79–91.Google Scholar
  12. Gladkochub, D.P., Donskaya, T.V., Fedorovskii, V.S., et al., The Olkhon metamorphic terrane in the Baikal region: An Early Paleozoic collage of Neoproterozoic active margin fragments, Russ. Geol. Geophys., 2010, vol. 51, no. 5, pp. 447–460.CrossRefGoogle Scholar
  13. Il’in, A.V., Geologicheskoe razvitie Yuzhnoi Sibiri i Mongolii v pozdnem dokembrii-kembrii (Geologic Evolution of Southern Siberia and Mongolia in the Late Precambrian–Cambrian), Moscow: Nauka, 1982 [in Russian].Google Scholar
  14. Karta geologicheskikh formatsii Mongol’skoi Narodnoi Respubliki. Masshtab 1: 1500000 (The 1: 1500000 Map of Geological Formations of the Mongolian People’s Republic), Yanshin, A.L., Ed., Moscow: GUGK SSSR, 1989 [in Russian].Google Scholar
  15. Kheraskova, T.N., Bush, V.A., Didenko, A.N., and Samygin, S.G., Breakup of Rodinia and early stages of evolution of the Paleoasian Ocean, Geotectonics, 2010, vol. 44, no.1, pp. 3–24.CrossRefGoogle Scholar
  16. Khomentovsky, V.V. and Gibsher, A.S., The Neoproterozoic–Lower Cambrian in northern Gobi-Altay, western Mongolia: regional setting, lithostratigraphy and biostratigraphy, Geol. Mag., 1996, vol. 133, nos. 1/4, pp. 445–485.Google Scholar
  17. Kovach, V.P., Kozakov, I.K., Yarmolyuk, V.V., et al., Crustal growth stages in the Songino block of the early Caledonian superterrane in Central Asia: II. Geochemical and Nd-isotope data, Petrology, 2013, vol. 21, no. 5, pp. 409–426.CrossRefGoogle Scholar
  18. Kovach, V.P., Kozakov, I.K., Salnikova, E.B., et al., Provenance areas of terrigenous rocks of the Tsaganolom Formation of the shelf slope of the Dzabkhan microkontinent, in Mater. VI Ross. Konf. po izotopnoi geokhronologii, 2–5 iyunya 2015 g., Sankt-Peterburg “Izotopnoe datirovanie geologicheskikh protsessov: novye rezul’taty, podkhody i perspektivy” (Proc. VI Russ. Conf. on Isotope Geochronology “Isotope Dating of Geological Processes: New Results, Approaches, and Perspectives”, June 2–5, 2015, St. Petersburg), St. Petersburg: Sprinter, 2015, pp. 106–108.Google Scholar
  19. Kozakov, I.K., Kotov, A.B., Kovach, V.P., and Sal’nikova, E.B., Crustal growth in the geologic evolution of the Baidarik block, Central Mongolia: evidence from Sm–Nd isotopic systematics, Petrology, 1997, vol. 5, no. 3, pp. 227–235.Google Scholar
  20. Kozakov, I.K., Kozlovskii, A.M., Yarmolyuk, V.V., et al., Crystalline complexes of the Tarbagatai block of the Early Caledonian superterrane of Central Asia, Petrology, 2011, vol. 19, no. 4, pp. 426–444.CrossRefGoogle Scholar
  21. Kozakov, I.K., Sal’nikova, E.B., Yarmolyuk, V.V., et al., Crustal growth stages in the Songino block of the Early Caledonian superterrane in Central Asia: I. Geological and geochronological data, Petrology, 2013a, vol. 21, no. 3, pp. 203–220.CrossRefGoogle Scholar
  22. Kozakov, I.K., Sal’nikova, E.B., Anisimova, I.V., et al., Late Riphean age of conglomerates from the Kholbonur complex of Songino block, Central Asian Caledonides, Stratigr. Geol. Correl., 2013b, vol. 21, no. 5, pp. 482–495.CrossRefGoogle Scholar
  23. Kozakov, I.K., Kovach, V.P., Bibikova, E.V., et al., Late Riphean episode in the formation of crystalline rock complexes in the Dzabkhan microcontinent: Geological, geochronologic, and Nd isotopic-geochemical data, Petrology, 2014, vol. 22, no. 5, pp. 480–506.CrossRefGoogle Scholar
  24. Kozakov I.K., Kirnozova T.I., Kovach V.P., et al., Late Riphean age of the crystalline basement of the carbonate cover of the Dzabkhan microcontinent, Stratigr. Geol. Correl., 2015, vol. 23, no. 3, pp. 237–245.CrossRefGoogle Scholar
  25. Kozakov, I.K., Kröner, A., and Kovach, V.P., Early Neoproterozoic stage of formation of the basement of the Dzabkhan terrane of the eastern segment of the Central Asian Fold Belt, in Mater. Vseross. Konf. IX Kosyginskie Ch.: Tektonika, glubinnoe stroenie i minerageniya Vostoka Azii (Proc. All-Russ. Conf. IX Kosygin’s Readings “Tectonics, Deep Structure, and Minerageny of the Eastern Asia”), Khabarovsk: ITiG Dalnevost. Otd. Russ. Akad. Nauk, 2016, pp. 35–38.Google Scholar
  26. Kozakov, I.K., Kröner, A., Kovach, V.P., et al., The Neoproterozoic stage (~960–930 Ma) of formation of the Island arc complex of the Dzabkhan terrane basement of the eastern segment of the Central Asian Fold Belt, in Mater. XLIX tekton. soveshch., posvyashchennogo 100-letiyu akad. Yu.M. Pushcharovskogo “Tektonika sovremennykh i drevnikh okeanov i ikh okrain” (Proc. XLIX Tecton. Conf. Devoted to the 100th Anniversary of Yu.M. Pushcharovsky “Tectonics of Modern and Ancient Oceans and their Margins”), Moscow: GEOS, 2017, pp. 181–184.Google Scholar
  27. Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.CrossRefGoogle Scholar
  28. Kröner, A., Lehmann, J., Schulmann, K., et al., Lithostratigraphic and geochronological constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic rifting followed by late Paleozoic accretion, Am. J. Sci., 2010, vol. 310, pp. 523–574.CrossRefGoogle Scholar
  29. Kröner, A., Kovach, V.P., Kozakov, I.K., et al., Zircon ages and Nd–Hf isotopes in UHT granulites of the Ider Complex: a cratonic terrane within the Central Asian Orogenic Belt in NW Mongolia, Gondwana Res., 2015, vol. 27, pp. 1392–1406.CrossRefGoogle Scholar
  30. Kuzmichev, A.B., Zhuravlev, D.Z., Bibikova, E.V., and Kirnozova, T.I., Upper Riphean (790 Ma) granitoids of the Tuva–Mongolian Massif as evidence of Early Baikalian orogeny, Geol. Geofiz., 2000, vol. 41, no. 10, pp. 1379–1383.Google Scholar
  31. Kuzmichev, A.B., Bibikova, E.V., and Zhuravlev, D.Z., Neoproterozoic (~800 Ma) orogeny in the Tuva–Mongolia Massif (Siberia): island arc-continent collision at the north-east Rodinia margin, Precambrian Res., 2001, vol. 110, pp. 109–126.CrossRefGoogle Scholar
  32. Kuzmichev, A.B. and Larionov, A.N., The Sarkhoi Group in East Sayan: Neoproterozoic (770–800 Ma) volcanic belt of the Andean type, Russ. Geol. Geophys., 2013a, vol. 52, no. 7, pp. 685–700.CrossRefGoogle Scholar
  33. Kuzmichev A.B. and Larionov A.N., Neoproterozoic island arcs in East Sayan: Duration of magmatism (from U–Pb zircon dating of volcanic clastics), Russ. Geol. Geophys., 2013b, vol. 54, no. 1, pp. 34–43.CrossRefGoogle Scholar
  34. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian), Stratigr. Geol. Correl., 2014, vol. 22, no. 6, pp. 553–575.CrossRefGoogle Scholar
  35. Levashova, N.M., Gibsher, A.S., and Meert, J.J., Precambrian microcontinents of the Ural-Mongolian Belt: new paleomagnetic and geochronological data, Geotectonics, 2011, no. 1, pp. 51–70.Google Scholar
  36. Li, Z.X., Li, X.H., Kinny, P.D., et al., Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China, and correlations with other continents evidence for a mantle superplume that broke up Rodinia, Precambrian Res., 2003, vol. 122, pp. 85–109.CrossRefGoogle Scholar
  37. Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., Assembly, configuration, and break-up history of Rodinia: a synthesis, Precambrian Res., 2008, vol. 160, pp. 179–210.CrossRefGoogle Scholar
  38. Liu, L., Yang, X., Santosh, M., et al., Neoproterozoic intraplate crustal accretion on the northern margin of the Yangtze block: evidence from geochemistry, zircon SHRIMP U–Pb dating and Hf isotopes from the Fuchashan Complex, Precambrian Res., 2015, vol. 268, pp. 97–114.CrossRefGoogle Scholar
  39. Longa, X., Yuana, Ch., Min Sun, M., et al., Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: evidence from Neoproterozoic granitoids in the Kuluketage area, NW China, Precambrian Res., 2011, vol. 187, pp. 1–14.CrossRefGoogle Scholar
  40. Lu, S., Li, H., Zhang, Ch., and Niu, G., Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments, Precambrian Res., 2008a, vol. 160, pp. 77–93.CrossRefGoogle Scholar
  41. Lu, S., Zhao, G., Wang, Hu., and Hao, G., Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review, Precambrian Res., 2008b, vol. 160, pp. 77–93.CrossRefGoogle Scholar
  42. Ludwig, K.R., PbDat for MS-DOS, Version 1.21, U.S. Geol. Survey Open-File Rept., 1991, no. 88–542.Google Scholar
  43. Ludwig, K.R., User’s Manual for Isoplot 3.70: A Geochronological Toolkit for Microsoft Excel, Berkeley: Geochronol. Center Spec. Publ., 2003.Google Scholar
  44. Mattinson, J.M., A study of complex discordance in zircons using step-wise dissolution techniques, Contrib. Mineral. Petrol., 1994, vol. 116, pp. 117–129.CrossRefGoogle Scholar
  45. Mossakovsky, A.A., Ruzhentsev, S.V., Samygin, S.G., and Kheraskova T.N., Central Asian Foldbelt: geodynamic evolution and formation history, Geotectonics, 1993, no. 6, pp. 3–33.Google Scholar
  46. Ovchinnikova, G.V., Kuznetsov, A.B., Vasil’eva, I.M., et al., U-Pb age and Sr isotope signature of cap limestones from the Neoproterozoic Tsagaan Oloom Formation, Dzabkhan River Basin, Western Mongolia Stratigr. Geol. Correl., 2012, vol. 20, no. 6, pp. 516–527.CrossRefGoogle Scholar
  47. Rojas-Agramonte, Y., Kroner, A., Alexeiev, D.V., et al., Detrital and igneous zircon ages for supracrustal rocks of the Kyrgyz Tianshan and palaeogeographic implications, Gondwana Res., 2014, vol. 26, pp. 957–974.CrossRefGoogle Scholar
  48. Shu, L.S., Faure, M., Yu, J.H., and Jahn, B.M., Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia, Precambrian Res., 2011, vol. 187, pp. 263–276.CrossRefGoogle Scholar
  49. Stacey, J.S. and Kramers, I.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221.CrossRefGoogle Scholar
  50. Steiger, R.H. and Jager, E., Subcomission of geochronology: convention of the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1976, vol. 36, no. 2, pp. 359–362.Google Scholar
  51. Tectonic map of Central Asia and Adjacent Areas, in Atlas of Geological maps of Central Asia and Adjacent Areas, 1: 2500000. Pt. 2, Beijing: Geol. Publ. House, 2008.Google Scholar
  52. Tektonicheskaya karta Severnoi Evrazii. Masshtab 1: 5000000 (The 1: 5000000 Tectonic Map of Northern Eurasia), Moscow: GUGK SSSR, 1978 [in Russian].Google Scholar
  53. Tectonics of the Mongolian People’s Republic, in Tr. Sovmestnoi Sovetsko-Mongol’skoi geologicheskoi ekspeditsii. Vyp. 9 (Proc. Joint Soviet–Mongolian Geol. Exped. Vol. 9), Moscow: Nauka, 1974 [in Russian].Google Scholar
  54. Wang, J. and Li, Z.X., History of Neoproterozoic rift basins in South China: implications for Rodinia break-up, Precambrian Res., 2003, vol. 122, pp. 141–158.CrossRefGoogle Scholar
  55. Yarmolyuk, V.V., Kovalenko, V.I., Anisimova, I.V., et al., Late Riphean alkali granites of the Zabhan microcontinent: Evidence for the timing of Rodinia breakup and formation of microcontinents in the Central Asian Fold belt, Dokl. Earth Sci., 2008, vol. 420, no. 1, pp. 583–588.CrossRefGoogle Scholar
  56. Yarmolyuk, V.V., Kozlovsky, A.M., Sal’nikova, E.B., et al., Structure, age, and geodynamic settings of early Neoproterozoic magmatic complexes of the Central Asian fold belt exemplified by the Holbo Nur zone of Songin terrane, Dokl. Earth Sci., 2015, vol. 465, no. 1, pp. 1112–1116.CrossRefGoogle Scholar
  57. Zaitsev, N.S., Tectonics of Mongolia, in Evolyutsiya geologicheskikh protsessov i metallogeniya Mongolii (Evolution of Geological Processes and Metallogeny of Mongolia), Moscow: Nauka, 1990, pp. 15–22.Google Scholar
  58. Zhang, Z., Zhu, W., Shu, L., et al., Neoproterozoic ages of the Kuluketage dyke swarm in Tarim, NW China, and its relationship to the breakup of Rodinia, Geol. Mag., 2009, vol. 146, no. 1, pp. 150–154.CrossRefGoogle Scholar
  59. Zhao, Y., Song, B., and Zhang, S.H., The Central Mongolian microcontinent: its Yangtze affinity and tectonic implications, in Proc. Symp. on Continental Growth and Orogeny in Asia, Taipei, Taiwan, 2006, pp. 135–136.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. K. Kozakov
    • 1
  • A. B. Kuznetsov
    • 1
  • Ch. Erdenegargal
    • 2
  • E. B. Salnikova
    • 1
  • I. V. Anisimova
    • 1
  • Ju. V. Plotkina
    • 1
  • A. M. Fedoseenko
    • 1
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Geology and Mineral ResourcesMongolian Academy of SciencesUlaanbaatarMongolia

Personalised recommendations