Stratigraphy and Geological Correlation

, Volume 24, Issue 1, pp 1–18 | Cite as

Pb-Sr-O-C isotope compositions of metacarbonate rocks of the Derbina Formation (East Sayan): Chemostratigraphic and geochronological significance

  • I. M. Gorokhov
  • A. B. Kuznetsov
  • G. V. Ovchinnikova
  • A. D. Nozhkin
  • P. Ya. Azimov
  • O. K. Kaurova


The Pb-Sr-O-C isotope compositions of calcite marbles of the Derbina Formation, exposed in the northwestern part of the Derbina block of the East Sayan, were studied. Rocks of the Derbina Formation were metamorphosed under high-temperature amphibolite facies conditions. The carbonate constituent of marbles contains (ppm) 15–130 Mn, 130–160 Fe, 0.008–0.039 Rb, 645–2190 Sr, 0.565–0.894 U, and 0.288–1.42 Pb. These concentrations are similar to those in modern carbonate sediments. The values of δ13C in marbles of the Derbina Formation range from–0.6 to +1.4‰ PDB; the values of δ18O range from 21.5 to 28.6‰ SMOW. The 87Sr/86Sr ratio values in the two least altered rocks, which meet geochemical criteria of the Rb-Sr system preservation in high-grade carbonate rocks, are 0.70804 and 0.70829. The protolith ages of marbles determined using Sr and C chemostratigraphy lie within the interval of 560–530 Ma, which is regarded as the period of carbonate sedimentation. The slope of the straight line on the 206Pb/204Pb–207Pb/204Pb diagram (n = 9, MSWD = 19) constructed on the basis of the data points of bulk carbonate constituents of all samples studied and those representing leachate steps of one of them in 0.5N HBr yields Late Vendian age (556 ± 31 (2σ) Ma. Taking into account the data on Sr and C isotope systematics of Derbina marbles, this age is regarded as the age of early diagenesis of carbonate sediments close to the age of sedimentation. Thus, metacarbonate rocks of the Derbina Formation preserved the pre-metamorphic chemostratigraphic and isotope-geochronological information. The age obtained testifies that formation of the carbonate cover of the Derbina block occurred in the Late Vendian. At the end of the Cambrian, carbonate deposits were metamorphosed during the Early Caledonian tectonic event in the southeastern part of the Central Asian Fold Belt.


carbonate rocks U-Pb age Rb-Sr Cand O-isotope systems isotope chemostratigraphy metamorphism Proterozoic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abell, P.I., McClory, J., Martin, A., and Nisbet, E.G., Archaean stromatolites from the Ngesi Group, Belingwe Greenstone Belt, Zimbabwe; preservation and stable isotopes–preliminary results, Precambrian Res., 1985, vol. 27, no. 4, pp. 357–383.CrossRefGoogle Scholar
  2. Babinski, M., Chemale, F., Jr., and Van Schmus, W.R., The Pb/Pb age of the Minas Supergroup carbonate rocks, Quadrilatero Ferrifero, Brazil, Precambrian Res., 1995, vol. 72, nos. 3–4, pp. 235–245.CrossRefGoogle Scholar
  3. Babinski, M., Van Schmus, W.R., and Chemale, F., Pb-Pb dating and Pb isotope geochemistry of Neoproterozoic carbonate rocks from the São Francisco basin, Brazil: implications for the mobility of Pb isotopes during tectonism and metamorphism, Chem. Geol., 1999, vol. 160, no. 3, pp. 175–199.CrossRefGoogle Scholar
  4. Baker, A.J. and Fallick, A.E., Evidence for CO2 infiltration in granulite-facies marbles from Lofoten-Vesteralen, Norway, Earth Planet. Sci. Lett., 1988, vol. 91, nos. 1–2, pp. 132–140.CrossRefGoogle Scholar
  5. Baker, A.J. and Fallick, A.E., Evidence from Lewisian limestone for isotopically heavy carbon in two-thousand-million-year-old sea water, Nature, 1989a, vol. 337, no. 6205, pp. 352–354.CrossRefGoogle Scholar
  6. Baker, A.J. and Fallick, A.E., Heavy carbon in two-billionyear-old marbles from Lofoten-Vesterålen, Norway: implications for the Precambrian carbon cycle, Geochim. Cosmochim. Acta, 1989b, vol. 53, no. 5, pp. 1111–1115.CrossRefGoogle Scholar
  7. Bell, K.G., Uranium in carbonate rocks, U.S. Geol. Surv. Prof. Pap., 1963, no. 474-A, pp. A1–A29.Google Scholar
  8. Berman, R.G., Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2, J. Petrol., 1988, vol. 29, no. 2, pp. 445–522.CrossRefGoogle Scholar
  9. Berman, R.G., Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications, Can. Mineral., 1991, vol. 29, no. 4, pp. 833–855.Google Scholar
  10. Berzin, N.A., Zona Glavnogo razloma Vostochnogo Sayana (The Main Fault Zone in the East Sayan), Moscow: Nauka, 1967 [in Russian].Google Scholar
  11. Bibikova, E.V., Karpenko, S.F., Sumin, L.V., et al., U-Pb, Sm-Nd, Pb-Pb, and K-Ar Ages of Metamorphic and Magmatic Rocks of the Ol'khon Region (Western Baikal Region), in Geologiya i geokhronologiya dokembriya Sibirskoi platformy i ee obramleniya (Precambrian Geology and Geochronology of the Siberian Craton and Adjacent Areas), Leningrad: Nauka, 1990, pp. 170–183.Google Scholar
  12. Bickle, M.J., Chapman, H.J., Wickman, S.M., and Peters, M.T., Strontium and oxygen isotope profiles across marble-silicate contacts, Lizzies Basin, East Humboldt Range, Nevada: constraints on metamorphic permeability contrasts and fluid flow, Contrib. Mineral. Petrol., 1995, vol. 121, no. 4, pp. 400–413.CrossRefGoogle Scholar
  13. Bickle, M.J., Chapman, H.J., Ferry, J.M., et al., Fluid flow and diffusion in the Waterville Limestone, south-central Maine: constraints from strontium, oxygen and carbon isotope profiles, J. Petrol., 1997, vol. 38, no. 11, pp. 1489–1512.CrossRefGoogle Scholar
  14. Bolhar, R., Hofmann, A., Woodhead, J., et al., Pband Ndisotope systematics of stromatolitic limestones from the 2.7 Ga Ngezi Group of the Belingwe Greenstone Belt: constraints on timing of deposition and provenance, Precambrian Res., 2002, vol. 114, nos. 3–4, pp. 277–294.CrossRefGoogle Scholar
  15. Bonnamy, M.G., Oberlin, A., and Trichet, J., Two examples of uranium associated with organic matter, Org. Geochem., 1982, vol. 4, no. 2, pp. 53–61.CrossRefGoogle Scholar
  16. Boulvais, P., Fourcade, S., Gruau, G., et al., Persistence of pre-metamorphic C and O isotopic signatures in marbles subject to Pan-African granulite-facies metamorphism and U–Th mineralization (Tranomaro, Southeast Madagascar), Chem. Geol., 1998, vol. 150, nos. 3–4, pp. 247–262.CrossRefGoogle Scholar
  17. Brand, U. and Veizer, J., Chemical diagenesis of a multicomponent carbonate system-1: trace elements, J. Sediment. Petrol., 1980, vol. 50, no. 4, pp. 1219–1236.Google Scholar
  18. Bucher-Nurminen, K., Die beziehung zwischen deformation, metamorphose und magmatismus im Gebiet der Bergeller Alpen, Schweiz. Mineral. Petrogr. Mitt., 1977, vol. 57, no. 3, pp. 413–434.Google Scholar
  19. Cortial, F., Gauthier-Lafaye, F., Lacrampe-Couloume, G., et al., Characterization of organic matter associated with uranium deposits in the Francevillian Formation of Gabon (Lower Proterozoic), Organic Geochem., 1990, vol. 15, no. 1, pp. 73–85.CrossRefGoogle Scholar
  20. Dmitrieva, N.V., Turkina, O.M., and Nozhkin, A.D., Geochemistry of metaterrigenous rocks from the Arzybei and Derba blocks of the Neoproterozoic accretion belt of the Siberian Craton: reconstruction of provenances and depositional environments, Litosfera, 2006, no. 3, pp. 28–44.Google Scholar
  21. Dokembrii Vostochnogo Sayana (The Precambrian of the East Sayan), Polkanov, A.A. and Obruchev, S.V., Eds., Moscow: Akad. Nauk SSSR, 1964 [in Russian].Google Scholar
  22. Eggert, R.G. and Kerrick, D.M., Metamorphic equilibria in the siliceous dolomite system: 6 kbar experimental data and geologic implications, Geochim. Cosmochim. Acta, 1981, vol. 45, no. 7, pp. 1039–1049.CrossRefGoogle Scholar
  23. Frei, R. and Kamber, B.S., Single mineral Pb-Pb dating, Earth Planet. Sci. Lett., 1995, vol. 129, nos. 1–4, pp. 261–268.CrossRefGoogle Scholar
  24. Frei, R., Villa, I.M., Nagler, Th.F., et al., Single mineral dating by Pb-Pb step-leaching method: assessing the mechanisms, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 2, pp. 393–414.CrossRefGoogle Scholar
  25. Frimmel, H.E., On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation, Precambrian Res., 2010, vol. 182, no. 4, pp. 239–253.CrossRefGoogle Scholar
  26. Geokhronologiya dokembriya Sibirskoi platformy i ee skladchatogo obramleniya (Precambrian Geochronology of the Siberian Platform and its Folded Frame), Manuilova, M.M., Ed., Leningrad: Nauka, 1968, pp. 6–19.Google Scholar
  27. Gerling, E.K., Kol'tsova, T.V., and Yakovleva, S.S., Comparative K/Ar age measurements on micas, amphiboles, and pyroxenes, in Geologiya i geokhronologiya dokembriya (The Precambrian Geology and Geochronology), Moscow, Leningrad: Nauka, 1964, pp. 204–219.Google Scholar
  28. Ghent, E.D. and O'Neil, J.R., Late Precambrian marbles of unusual carbon-isotope composition, southeastern British Columbia, Can. J. Earth Sci., 1985, vol. 22, no. 3, pp. 324–329.Google Scholar
  29. Gladkochub, D.P., Donskaya, T.V., Wingate, M.T.D., et al., Petrology, geochronology, and tectonic implications of c. 500 Ma metamorphic and igneous rocks along the northern margin of the Central Asian Orogen (Olkhon terrane, Lake Baikal, Siberia), J. Geol. Soc. (London, U.K.) 2008, vol. 165, no. 1, pp. 235–246.CrossRefGoogle Scholar
  30. Gladkochub, D.P., Donskaya, T.V., Fedorovskii, V.S., et al., The Olkhon metamorphic terrane in the Baikal region: an Early Paleozoic collage of Neoproterozoic active margin fragments, Russ. Geol. Geophys., 2010, vol. 51, no. 5, pp. 447–460.CrossRefGoogle Scholar
  31. Gordon, T.M. and Greenwood, H.J., The reaction dolomite + quartz + water = talc + calcite + carbon dioxide, Am. J. Sci., 1970, vol. 268, no. 3, pp. 225–242.CrossRefGoogle Scholar
  32. Gorokhov, I.M., Semikhatov, M.A., Baskakov, A.V., et al., Sr isotopic composition in Riphean, Vendian, and Lower Cambrian carbonates from Siberia, Stratigr. Geol. Correl., 1995, vol. 3, no. 1, pp. 3–33.Google Scholar
  33. Gostenberger, H. and Herman, M., KN-2 new 13C/12C and 18O/16O standard for mass-spectrometry of geological samples, Geokhimiya, 1984, no. 12, pp. 1939–1940.Google Scholar
  34. Halverson, G.P. and Shields-Zhou, G., Chemostratigraphy and the Neoproterozoic glaciations, Geol. Soc. London Mem., 2011, vol. 36, pp. 51–66.CrossRefGoogle Scholar
  35. Jahn, B.-m., Pb-Pb dating of young marbles from Taiwan, Nature, 1988, vol. 332, no. 6163, pp. 429–432.CrossRefGoogle Scholar
  36. Jahn, B.-m. and Cuvellier, H., Pb-Pb and U-Pb geochronology of carbonate rocks: an assessment, Chem. Geol. (Isot. Geosci. Sect.), 1994, vol. 115, nos. 1–2, pp. 125–151.Google Scholar
  37. Jahn, B.-m. and Simonson B.M., Carbonate Pb-Pb ages of the Wittenoom Formation and Carawine Dolomite, Hamersley Basin, Western Australia (with implications for their correlation with Transvaal Dolomite of South Africa), Precambrian Res., 1995, vol. 72, nos. 3–4, pp. 247–261.CrossRefGoogle Scholar
  38. Kaurova, O.K., Ovchinnikova, G.V., and Gorokhov, I.M., U-Th-Pb systematics of Precambrian carbonate rocks: dating of the formation and transformation of carbonate sediments, Stratigr. Geol. Correl., 2010, vol. 18, no. 3, pp. 252–268.CrossRefGoogle Scholar
  39. Khain, E.V., Neymark, L.A., and Amelin, Yu.V., The remobilization of the Precambrian basement of the Gargan block, East Sayan at the Caledonian Stage: isotope-geochronological data, Dokl. Akad. Nauk, 1995, vol. 340, no. 6, pp. 776–780.Google Scholar
  40. Khomentovskii, V.V., Semikhatov, M.A., and Repina, L.N., Stratigraphy of Precambrian and Lower Paleozoic deposits of the western part of the East Sayan, Reg. Stratigr. SSSR, 1960, vol. 4, pp. 5–170.Google Scholar
  41. Konikov, A.Z. and Man'kovskii, V.K., Main features of the geological evolution of the East Sayan in the Precamprian and Lower Cambrian, Geol. Geofiz., 1963, no. 10, pp. 117–127.Google Scholar
  42. Kozakov, I.K., Kotov, A.B., Sal'nikova, E.B., et al., Timing of the structural evolution of metamorphic rocks in the Tuva-Mongolian Massif, Geotectonika, 2001, vol. 35, no. 3, pp. 165–184.Google Scholar
  43. Kozakov, I.K., Sal'nikova, E.B., Khain, E.V., et al., Stages and tectonic environment of formation of crystalline complexes of the Early Caledonides of the Ozernaya Zone, Mongolia: results of U-Pb and Sm-Nd isotope studies, Geotektonika, 2002, no. 2, pp. 80–92.Google Scholar
  44. Kozakov, I.K., Kovach, V.P., Yarmolyuk, V.V., et al., CrustForming Processes in the Geologic Development of the Tuva-Mongolia Massif: Sm-Nd Isotopic and Geochemical Data for Granitoids, Petrology, 2003, vol. 11, no. 5, pp. 444–463.Google Scholar
  45. Kozakov, I.K., Sal'nikova, E.B., Natman, A., et al., Metasedimentary complexes of the Tuva-Mongolian Massif: age, provenances, and tectonic position, Stratigr. Geol. Correl., 2005, vol. 13, no. 1, pp. 1–20.Google Scholar
  46. Kozakov, I.K., Sal'nikova, E.B., Yarmolyuk, V.V., et al., Convergent boundaries and related igneous and metamorphic complexes in Caledonides of Central Asia, Geotectonics, 2012, no. 1, pp. 16–36.CrossRefGoogle Scholar
  47. Kuzmichev, A.B., Tektonicheskaya istoriya Tuvino-Mongol'skogo massiva: rannebaikal'skii, pozdnebaikal'skii i rannekaledonskii etapy (Tectonic History of the Tuva-Mongol Massif: Early Baikalian, Late Baikalian, and Early Caledonian Stages), Moscow: PROBEL-2000, 2004 [in Russian].Google Scholar
  48. Kuznetsov, A.B., Semikhatov, M.A., Gorokhov, I.M., et al., Sr isotope composition in carbonates of the Karatau Group, Southern Urals, and standard curve of 87Sr/86Sr variations in the Late Riphean Ocean, Stratigr. Geol. Correl., 2003, vol. 11, no. 5, pp. 415–449.Google Scholar
  49. Kuznetsov, A.B., Melezhik, V.A., Gorokhov, I.M., et al., Sr isotopic composition of Paleoproterozoic 13C-rich carbonate rocks: the Tulomozero Formation, SEFennoscandian Shield, Precambrian Res., 2010, vol. 182, no. 4, pp. 300–312.CrossRefGoogle Scholar
  50. Kuznetsov, A.B., Gorokhov, I.M., Ovchinnikova, G.V., et al., Rb-Sr and U-Pb systematics of metasedimentary carbonate rocks: The Paleoproterozoic Kuetsjarvi Formation of the Pechenga Greenstone Belt, Kola Peninsula, Lithol. Miner. Resour., 2011, vol. 46, no. 2, pp. 151–164.CrossRefGoogle Scholar
  51. Kuznetsov, A.B., Ovchinnikova, G.V., Gorokhov, I.M., et al., Age constraints on the Neoproterozoic Baikal Group from combined Sr isotopes and Pb-Pb dating of carbonates from the Baikal type section, southeastern Siberia, J. Asian Earth Sci., 2013, vol. 62, pp. 51–66.CrossRefGoogle Scholar
  52. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian), Stratigr. Geol. Correl., 2014, vol. 22, no. 6, pp. 553–575.CrossRefGoogle Scholar
  53. Land, L.S., The dolomite problem: stable and radiogenic isotope clues, in Isotopic Signatures and Sedimentary Records, Clauer, N. and Chaudhuri, S., Eds., Berlin: Springer-Verlag, 1992, pp. 49–68.CrossRefGoogle Scholar
  54. Lewis, S., Holness, M., and Graham, C., Ion microprobe study of marble from Naxos, Greece: grain-scale fluid pathways and stable isotope equilibration during metamorphism, Geology, 1998, vol. 26, no. 10, pp. 935–938.CrossRefGoogle Scholar
  55. Ludwig, K.R., PBDAT for MSDOS. A computer program for IBM-PC compatibles for processing raw Pb-U-Th isotope data. Version 1.06, U.S. Geol. Surv. Open-File Rep., 1989, no. 88-542, pp. 1–43.Google Scholar
  56. Ludwig, K.R., Users Manual for Isoplot/EX, Version 2, a geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center. Spec. Publ., 1999, no. 1a.Google Scholar
  57. Manhes, G., Minster, J.E., and Allegre, C.J., Comparative uranium-thorium-lead and rubidium-strontium study of Severin Amphoterite: ñonsequences for early Solar System chronology, Earth Planet. Sci. Lett., 1978, vol. 39, no. 1, pp. 14–24.CrossRefGoogle Scholar
  58. Manskaya, S.M., Drozdova, T.V., and Emel'yanova, M.P., Uranium fixation by humic acids and melanoidins, Geokhimiya, 1956, no. 4, pp. 10–23.Google Scholar
  59. Melezhik, V.A., Gorokhov, I.M., Fallick, A.E., and Gjelle, S., Strontium and carbon isotope geochemistry applied to dating of carbonate sedimentation: an example from high-grade rocks of the Norwegian Caledonides, Precambrian Res., 2001, vol. 108, nos. 3–4, pp. 267–292.CrossRefGoogle Scholar
  60. Melezhik, V.A., Gorokhov, I.M., Fallick, A.E., et al., Isotopic evidence for a complex Neoproterozoic to Silurian rock assemblage in the North-Central Norwegian Caledonides, Precambrian Res., 2002a, vol. 114, nos. 1–2, pp. 55–86.CrossRefGoogle Scholar
  61. Melezhik, V.A., Gorokhov, I.M., Fallick, A.E., et al., Isotopic stratigraphy suggests Neoproterozoic ages and Laurentian ancestry for high-grade marbles from the North-Central Norwegian Caledonides, Geol. Mag., 2002b, vol. 139, no. 4, pp. 375–393.CrossRefGoogle Scholar
  62. Melezhik, V.A., Roberts, D., Fallick, A.E., et al., Geochemical preservation potential of high-grade calcite marble versus dolomite marble: implication for isotope chemostratigraphy, Chem. Geol., 2005, vol. 216, nos. 3–4, pp. 203–224.CrossRefGoogle Scholar
  63. Melezhik, V.A., Kuznetsov, A.B., Fallick, A.E., et al., Depositional environments and an apparent age for the Geci meta-limestones: constraints on the geological history of northern Mozambique, Precambrian Res., 2006, vol. 148, nos. 1–2, pp. 19–31.CrossRefGoogle Scholar
  64. Melezhik, V.A., Bingen, B., Fallick, A.E., et al., Isotope chemostratigraphy of marbles in northeastern Mozambique: apparent depositional ages and regional implications, Precambrian Res., 2008a, vol. 162, nos. 3–4, pp. 540–558.CrossRefGoogle Scholar
  65. Melezhik, V.A., Roberts, D., Fallick, A.E., and Gorokhov, I.M., The Shuram-Wonoka event recorded in a high-grade metamorphic terrane: insight from the Scandinavian Caledonides, Geol. Mag., 2008b, vol. 145, no. 2, pp. 161–172.CrossRefGoogle Scholar
  66. Melezhik, V.A., Roberts, D., Gjelle, S., et al., Isotope chemostratigraphy of high-grade marbles in the Rognan area, North-Central Norwegian Caledonides: a new geological map, and tectonostratigraphic and palaeogeographic implications, Norwegian J. Geol., 2013, vol. 93, no. 3, pp. 107–139.Google Scholar
  67. Melezhik, V.A., Kuznetsov, A.B., Pokrovsky, B.G., et al., Chemostratigraphic insight into deposition of the Melkedalen Marble, Narvik Nappe Complex, North-Central Norwegian Caledonides, Norwegian J. Geol., 2014, vol. 94, no. 1, pp. 35–50.Google Scholar
  68. Molchanov, I.A., The East Sayan in Ocherki po geologii Sibiri (Essays on the Geology of Siberia), Leningrad: Akad. Nauk SSSR, 1934, Iss. 5.Google Scholar
  69. Moorbath, S., Taylor, P.N., Orpen, J.L., et al., First direct radiometric dating of Archaean stromatolitic limestone, Nature, 1987, vol. 326, no. 6116, pp. 865–867.CrossRefGoogle Scholar
  70. Nabelek, P.I., Stable isotope monitors, in Contact Metamorphism, Kerrick, D.M., Ed., Rev. Mineral. Min. Soc. Am., 1991, vol. 26, pp. 395–435.Google Scholar
  71. Neymark, L.A., Potential and restrictions of the lead-isochron method in dating Precambrian polymetamorphic rocks, in Izotopnoe datirovanie protsessov metamorfizma i metasomatoza (Isotope Dating of Metamorphic and Metasomatic Processes), Moscow: Nauka, 1987, pp. 29–44.Google Scholar
  72. Nozhkin, A.D., Turkina, O.M., Dmitrieva, N.V., et al., Metacarbonate-terrigenous deposits and granitoids of the Alygdzher structure of the Derbina block, in Mater. nauchn. soveshch. “Geodinamicheskaya evolyutsiya litosfery Tsentral'no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu)” (Proc. Sci. Conf. “Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (From Ocean to Continent)”), Irkutsk: Inst. Geogr. SB RAS, 2003, pp. 184–188.Google Scholar
  73. Nozhkin, A.D., Bayanova, T.B., Turkina, O.M., et al., Early Paleozoic granitoid magmatism and metamorphism in the Derba microcontinent, Eastern Sayan: new isotopicgeochronological data, Dokl. Earth Sci., 2005, vol. 404, no. 7, pp. 1084–1089.Google Scholar
  74. Nozhkin, A.D., Turkina, O.M., Dmitrieva, N.V., et al., Metaterrigenous-carbonate deposits and granitoids of the Derbina block (Eastern Sayan): petrogeochemical data, isotope-geochronological age constraints, and formation conditions, in Geodinamicheskaya evolyutsiya litosfery Tsentral'no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu). Mat. Soveshch. (Proc. Sci. Conf. “Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (From Ocean to Continent)”), Irkutsk: Inst. Zemn. Kory SBRAS, 2012, vol. 2, no. 10, pp. 30–32.Google Scholar
  75. Nozhkin, A.D., Dmitrieva, N.V., Serov, P.A., and Maslov, A.V., Petrogeochemical and isotope peculiarities of supersubduction terrigenous deposits: the example of Predivinsk terrane of the Yenisei Ridge, Dokl. Earth Sci., 2013, vol. 452, no. 2, pp. 1039–1041.CrossRefGoogle Scholar
  76. Nozhkin, A.D., Turkina, O.M., Dmitrieva, N.V., and Likhanov, I.I., Age and P-T parameters of metamorphism of metaterrigenous-carbonate deposits of the Derba block (East Sayan), Dokl. Earth Sci., 2015, vol. 461, no. 2, pp. 390–393.CrossRefGoogle Scholar
  77. Obnovlennye skhemy mezhregional'noi i regional'noi korrelyatsii magmaticheskikh i metamorficheskikh kompleksov Altae-Sayanskoi skladchatoi oblasti i Eniseiskogo kryazha (Updated Schemes of Interregional and Regional Correlation of Magmatic and Metamorphic Complexes in the Altai-Sayan Foldbelt and Yenisei Range), Novosibirsk: Siberian Nauchno-Issled. Inst. Geol., Geofiz., Mineral. Syr'ya, 2007 [in Rusian].Google Scholar
  78. Otsuji, N., Satish-Kumar, M., Kamei, A., et al., Late-Tonian to early-Cryogenian apparent depositional ages for metacarbonate rocks from the Sør Rondane Mountains, East Antarctica, Precambrian Res., 2013, vol. 234, pp. 257–278.CrossRefGoogle Scholar
  79. Ovchinnikova, G.V., Semikhatov, M.A., Gorokhov, I.M., et al., The U-Pb systematics of Precambrian carbonates: the Riphean Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia, Litol. Polezn. Iskop., 1995, no. 5, pp. 525–536.Google Scholar
  80. Ovchinnikova, G.V., Vasil'eva, I.M., Semikhatov, M.A., et al., The U-Pb systematics on Proterozoic carbonate rocks: the Inzer Formation of the Upper Riphean Stratotype (Southern Urals), Stratigr. Geol. Correl., 1998, vol. 6, no. 4, pp. 336–347.Google Scholar
  81. Ovchinnikova, G.V., Vasil'eva, I.M., Semikhatov, M.A., et al., The Pb-Pb trail dating of carbonates with open U-Pb systems: the Min'yar Formation of the Upper Riphean Stratotype, Southern Urals, Stratigr. Geol. Correl., 2000, vol. 8, no. 6, pp. 529–543.Google Scholar
  82. Ovchinnikova, G.V., Gorokhov, I.M., Vasil'eva, I.M., et al., The Pb-Pb dating of metamorphosed carbonates, in Mater. III Ross. Konf. po izotopnoi geokhronologii “Izotopnoe datirovanie protsessov rudoobrazovaniya, magmatizma, osadkonakopleniya i metamorfizma” (Proc. 3rd Russ. Conf. on Isotope Geochronol. “Isotopic Dating of Ore Genesis, Magmatism, Sedimentation, and Metamorphism”), Moscow: GEOS, 2006, vol. 2, pp. 86–91.Google Scholar
  83. Ovchinnikova, G.V., Kuznetsov, A.B., Melezhik, V.A., et al., The Pb-Pb age of Jatulian carbonate rocks: the Tulo-mozero Formation of southeast Karelia, Stratigr. Geol. Correl., 2007, vol. 15, no. 4, pp. 359–372.CrossRefGoogle Scholar
  84. Ovchinnikova, G.V., Kuznetsov, A.B., Vasil'eva, I.M., et al., U-Pb age and Sr isotope signature of cap limestones from the Neoproterozoic Tsagaan Oloom Formation, Dzabkhan River Basin, Western Mongolia, Stratigr. Geol. Correl., 2012, vol. 20, no. 6, pp. 516–527.CrossRefGoogle Scholar
  85. Prave, A.R., Strachan, R.A., and Fallick, A.E., Global C cycle perturbations recorded in marbles: a record of Neoproterozoic earth history within the Dalradian succession of the Shetland Islands, Scotland, J. Geol. Soc. (London, U.K.), 2009a, vol. 166, no. 1, pp. 129–135.CrossRefGoogle Scholar
  86. Prave, A.R., Fallick, A.E., Thomas, C.W., and Graham, C.M., A composite C-isotope profile for the Neoproterozoic Dalradian Supergroup of Scotland and Ireland, J. Geol. Soc. (London, U.K.) 2009b, vol. 166, no. 5, pp. 845–857.CrossRefGoogle Scholar
  87. Reznitskii, L.Z., Sal'nikova, E.B., Barash, I.G., et al., Upper age boundary of the accretion of terranes in the northwestern part of the eastern segment of the Central Asian Foldbelt, Dokl. Earth Sci., 2007, vol. 414, no. 1, pp. 548–551.CrossRefGoogle Scholar
  88. Romer, R.L., Deformation-related Paleozoic radiogenic lead and strontium additions in Proterozoic marbles from the Rombak-sjangeli basement culmination, Scandinavian Caledonides, Geol. Fören. Stockholm Förh., 1994, vol. 116, no. 1, pp. 23–29.Google Scholar
  89. Rouzaud, J.N., Oberlin, A., and Trichet, J., Interaction of uranium and organic matter in uraniferous sediments, Phys. Chem. Earth, 1980, vol. 12, pp. 505–516.CrossRefGoogle Scholar
  90. Rumyantsev, M.Yu., Turkina, O.M., Nozhkin, A.D., et al., New data on the age of the Shumikha Paleoisland-arc complex (East Sayan): Late Riphean-Vendian crust formation on the southwestern margin of the Siberian Platform, Geol. Geofiz., 2000, vol. 41, no. 12, pp. 1790–1797.Google Scholar
  91. Russell, J., Chadwick, B., Krishna, Rao B., and Vasudev, V.N., Whole-rock Pb/Pb ages of late Archean limestones, Karnataka, India, Precambrian Res., 1996, vol. 78, no. 4, pp. 261–272.CrossRefGoogle Scholar
  92. Salnikova, E.B., Sergeev, S.A., Kotov, A.B., et al., U-Pb zircon dating of granulite metamorphism in the Sludyanskiy Complex, Eastern Siberia, Gondwana Res., 1998, vol. 1, no. 2, pp. 195–205.CrossRefGoogle Scholar
  93. Salnikova, E.B., Kozakov, I.K., Kotov, A.B., et al., Age of Palaeozoic granites and metamorphism in the TuvinoMongolian massif of the Central Asian Mobile Belt: loss of a Precambrian microcontinent, Precambrian Res., 2001, vol. 110, nos. 1–4, pp. 143–164.CrossRefGoogle Scholar
  94. Sarangi, S., Gopalan, K., and Srinivasan, R., Small scale sampling for Pb-Pb dating of marbles: example from the Sargur supracrustal rocks, Dharwar Craton, South India, Precambrian Res., 2007, vol. 152, nos. 1–2, pp. 83–91.CrossRefGoogle Scholar
  95. Satish-Kumar, M., Miyamoto, T., Hermann, J., et al., Premetamorphic carbon, oxygen and strontium isotope signature of high-grade marbles from the Lützow-Holm Complex, East Antarctica: apparent age constraints of carbonate deposition, Geol. Soc. London Spec. Publ., 2008, vol. 308, pp. 147–164.CrossRefGoogle Scholar
  96. Semikhatov, M.A. and Khomentovskii, V.V., Stratigraphy of the Precambrian deposits of the western part of the East Sayan, Dokl. Akad. Nauk SSSR, 1957, vol. 110, no. 2, pp. 273–275.Google Scholar
  97. Slagstad, T., Melezhik, V.A., Kirkland, C.L., et al., Carbonate isotope chemostratigraphy suggests revisions to the geological history of the West Finnmark Caledonides, Northern Norway, J. Geol. Soc. (London, U.K.), 2006, vol. 163, no. 2, pp. 277–289.CrossRefGoogle Scholar
  98. Stratigraficheskii slovar' SSSR. Nizhnii dokembrii (Stratigraphic Chart of the USSR. Lower Precambrian), Leningrad: Nauka, 1989 [in Russian].Google Scholar
  99. Taylor, P.N. and Kalsbeek, F., Dating of metamorphism of Precambrian marbles: examples from Proterozoic mobile belts in Greenland, Chem. Geol., 1990, vol. 86, no. 1, pp. 21–28.Google Scholar
  100. Thomas, C.W., Graham, C.M., Ellam, R.M., and Fallick, A.E., 87Sr/86Sr chemostratigraphy of Neoproterozoic Dalradian limestones of Scotland and Ireland: constraints on depositional ages and time scales, J. Geol. Soc. (London, U.K.) 2004, vol. 161, no. 2, pp. 229–242.CrossRefGoogle Scholar
  101. Turkina, O.M., Nozhkin, A.D., Bayanova, T.B., et al., Precambrian terranes in the southwestern framing of the Siberian Craton: isotopic provinces, stages of crustal evolution and accretion-collision events, Russ. Geol. Geophys., 2007, vol. 48, no. 1, pp. 80–92.CrossRefGoogle Scholar
  102. Veizer, J., Clayton, R.N., and Hinton, R.W., Geochemistry of Precambrian carbonates: 3-shelf seas and non-marine environments of the Archean, Geochim. Cosmochim. Acta, 1990, vol. 54, no. 10, pp. 2717–2729.CrossRefGoogle Scholar
  103. Vladimirov, A.G., Khromykh, S.V., Mekhonoshin, A.S., et al., U-Pb dating and Sm-Nd systematics of igneous rocks in the Ol'khon Region (Western Baikal Coast), Dokl. Earth Sci., 2008, vol. 423, no. 2, pp. 1372–1375.CrossRefGoogle Scholar
  104. Vladimirov, A.G., Volkova, N.I., Mekhonoshin, A.S., et al., The geodynamic model of formation of Early Caledonides in the Olkhon Region (West Pribaikalie), Dokl. Earth Sci., 2011, vol. 436, no. 2, pp. 203–209.CrossRefGoogle Scholar
  105. Volobuev, M.I., Zykov, S.I., Stupnikova, N.I., and Vorob'ev, I.V., The Pb isotope geochronology of Precambrian metamorphic complexes of the southwestern part of the Siberian Platform, in Geokhronologiya Vostochnoi Sibiri i Dal'nego Vostoka (Geochronology of Eastern Siberia and the Far East), Ovchinnikov, L.N., Ed., Moscow: Nauka, 1980, pp. 14–30.Google Scholar
  106. Whitehouse, M.J. and Russell, J., Isotope systematics of Precambrian marbles from the Lewisian complex of northwest Scotland: implications for Pb-Pb dating of metamorphosed carbonates, Chem. Geol., 1997, vol. 136, nos. 3–4, pp. 295–307.CrossRefGoogle Scholar
  107. Wickham, S.M. and Peters, M.T., High δ13C Neoproterozoic carbonate rocks in Western North America, Geology, 1993, vol. 21, no. 2, pp. 165–168.CrossRefGoogle Scholar
  108. Zheng, Y., Fu, B., Gong, B., et al., U-Pb dating of marble associated with eclogite from the Dabie Mountains, East China, Chinese J. Geochem., 1997, vol. 16, no. 3, pp. 193–201.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. M. Gorokhov
    • 1
  • A. B. Kuznetsov
    • 1
  • G. V. Ovchinnikova
    • 1
  • A. D. Nozhkin
    • 2
  • P. Ya. Azimov
    • 1
  • O. K. Kaurova
    • 1
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations