Stratigraphy and Geological Correlation

, Volume 23, Issue 6, pp 645–660 | Cite as

Late Pleistocene-Holocene events on the continental slope of the Laptev Sea: Evidence from benthic and planktonic foraminiferal assemblages

  • Ya. S. Ovsepyan
  • E. E. Taldenkova
  • H. A. Bauch
  • E. S. Kandiano


This work is dedicated to the study of benthic and planktonic foraminifers and is a contribution to the multidisciplinary investigations of Core PS51/154-11 from the Laptev Sea. The paleoecological analysis of foraminiferal assemblages makes it possible to reconstruct in detail environmental changes on the western continental margin of the Laptev Sea during the Late Pleistocene and Holocene. The examined core dated by the AMS radiocarbon method is divided into intervals that reflect main stages in the regional evolution for the last 17.6 k.y.: early deglaciation, Bølling–Allerød warming, Younger Dryas cooling, transition to the Interglacial, Holocene climatic optimum, Middle-Late Holocene. The presence of subpolar planktonic foraminifers and benthic species Cassidulina neoteretis (Tappan) provides grounds to reconstruct for the continental slope area stages of the enhanced activity of subsurface Atlantic-derived water in the intervals of 12.0–14.7 and 0.6–5.4 ka. The benthic assemblage reflects changes in depositional environments related to the postglacial transgression and also climatic change impacts affecting bioproductivity. The events defined on the basis of foraminifers are correlated with climatic oscillations and changes in circulation of water masses.


foraminifers Laptev Sea paleoreconstructions Late Pleistocene Holocene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauch, H.A., Kubisch-Popp, M.K., Cronin, T.M., and Rossak, B., A study of the calcareous microfauna from Laptev Sea sediments, Berichte zur Polarforschung, 1995, vol. 176.Google Scholar
  2. Bauch, H.A., Kassens, H., Erlenkeuser, H., et al., Depositional environment of the Laptev Sea (Arctic Siberia) during the Holocene, Boreas, 1999, vol. 28, pp. 194–204.CrossRefGoogle Scholar
  3. Bauch, H.A., Mueller-Lupp, T., Taldenkova, E., et al., Chronology of the Holocene transgression at the North Siberian margin, Global Planet. Change, 2001a, vol. 31, pp. 125–139.CrossRefGoogle Scholar
  4. Bauch, H.A., Erlenkeuser, H., Spielhagen, R.F., et al., A multiproxy reconstruction of the evolution of deep and surface waters in the Subarctic Nordic seas over the last 30.000 yr, Quaternary Sci. Rev., 2001b, vol. 20, pp. 659–678.CrossRefGoogle Scholar
  5. Bauch, H.A. and Polyakova, Ye.I., Diatom-inferred salinity records from the Arctic Siberian margin: implications for fluvial runoff patterns during the Holocene, Paleoceanogr., 2003, vol. 18, no. 2, pp. 501–510.CrossRefGoogle Scholar
  6. Bradley, R.S. and England, J.H., The Younger Dryas and the sea of ancient ice, Quatern. Res., 2008, vol. 70, pp. 1–10.CrossRefGoogle Scholar
  7. Bude, S.-O., Artengemeinschaften bentischer foraminiferen in der Laptev-See, Sibirische Arktis: Rezent verteilungsmuster und okologie, Unpubl. M. Sci. Thesis, Kiel Univ., 1997.Google Scholar
  8. Caralp, M.H., Size and morphology of the benthic foraminifer Melonis barleeanum: relationships with marine organic matter, J. Foraminifer. Res, 1989, vol. 19, no. 3, pp. 235–245.CrossRefGoogle Scholar
  9. Chistyakova, N.O., Ivanova, E.V., Risebrobakken, B., et al., Reconstruction of the postglacial environments in the southwestern Barents Sea based on foraminiferal assemblages, Oceanol., 2010, vol. 50, no. 4, pp. 573–581.CrossRefGoogle Scholar
  10. Dennison, J.M. and Hay, W.W., Estimating the needed sampling area for subaquatic ecologic studies, J. Paleontol., 1967, vol. 41, pp. 706–708.Google Scholar
  11. Dmitrenko, I.A., Hölemann J.A., Kirillov, S.A., et al., Role of barotropic changes in the sea level in the formation of flow regime on the shelf of the eastern Laptev Sea, Dokl. Earth Sci., 2001, vol. 377, no. 1, pp. 1–8.Google Scholar
  12. Dmitrenko, I.A., Kirillov, S.A., Tremblay, L.B., et al., Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography, J. Geophys. Res., 2010, vol. 115, C08010.Google Scholar
  13. Dobrovol’skii, A.D. and Zalogin, B.S., Morya SSSR (Seas of the USSR), Moscow: Moscow State Univ., 1982 [in Russian].Google Scholar
  14. Eicken, H., Reimnitz, E., Alexandrov, V., et al., Sea-ice processes in the Laptev Sea and their importance for sediment export, Cont. Shelf Res., 1997, vol. 17, no. 2, pp. 205–233.CrossRefGoogle Scholar
  15. Fairbanks, R.G., Mortlock, R.A., Chiu, T.-Ch., et al., Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals, Quaternary Sci. Rev., 2005, vol. 24, pp. 1781–1796.CrossRefGoogle Scholar
  16. Fatela, F. and Taborda, R., Confidence limits of species proportions in microfossil assemblages, Marine Micropaleontol., 2002, vol. 45, pp. 169–174.CrossRefGoogle Scholar
  17. Hald, M., Steinsund, P.I., Dokken, T., et al., Recent and Late Quaternary distribution of Elphidium excavatum f. clavatum in the Arctic seas, Cushman Found. Spec. Publ., 1994, vol. 32, pp. 141–153.Google Scholar
  18. Hubberten, H.W., Andreev, A., Astakhov, V.I., et al., The periglacial climate and environment in Northern Eurasia during the last glaciation, Quatern. Sci. Rev., 2004, vol. 23, nos. 11–13, pp. 1333–1357.CrossRefGoogle Scholar
  19. Ivanov, V.V. and Golovin, P.N., Observations and modeling of dense water cascading from the northwestern Laptev Sea shelf, J. Geophys. Res., 2007, vol. 112, C09003.Google Scholar
  20. Jakobsson, M., Long, A., Ingólfsson, Ó., et al., New insights on Arctic Quaternary climate variability from palaeo-records and numerical modeling, Quatern. Sci. Rev., 2010, vol. 29, pp. 3349–3358.CrossRefGoogle Scholar
  21. Kassens, H. and Karpiy, V.Y., and the Shipboard Scientific Party, Russian-German cooperation: the Transdrift I expedition to the Laptev Sea, Berichte zum Polarforschung, 1994, vol. 1.Google Scholar
  22. Klyuvitkina, T.S., Novichkova, E.A., Polyakova, E.I., and Mattiessen, I., Aquatic palynomorphs in the Eurasian Arctic sea sediments and their significant of the Late Pleistocene and Holocene paleoceanographic reconstructions (by the example of the White and the Laptev seas), in Sistema morya Laptevykh i prilegayushchikh arkticheskikh morei: sovremennye usloviya i paleoklimat (The System of the Laptev Sea and Adjacent Arctic Seas: Current Status and Paleoclimate), Moscow: Moscow State Univ., 2009, pp. 448–466.Google Scholar
  23. Knudsen, K.L. and Seidenkrantz, M.-S., Stainforthia feylingi new species from arctic to subarctic environments, previously recorded as Stainforthia schreibersiana (Czjzek), Cushman Found. Foraminifer. Res. Spec. Publ., 1994, vol. 32, pp. 5–13.Google Scholar
  24. Knudsen, K.L., Stabell, B., Seidenkrantz, M.-S., et al., Deglacial and Holocene conditions in northernmost Baffin Bay: sediments, foraminifera, diatoms and stable isotopes, Boreas, 2008, vol. 37, pp. 346–376.CrossRefGoogle Scholar
  25. Korsun, S.A., Pogodina, I.A., Tarasov, G.A., and Matishov, G.G., Foraminifery Barentseva morya (gidrobiologiya i chetvertichnaya paleoekologiya) (Foraminifers of the Barents Sea (Hydrobiology and Quaternary Paleoecology)), Apatity: Izd-vo KNTs RAN, 1994 [in Russian].Google Scholar
  26. Land–Ocean Systems in the Siberian Arctic: Dynamics and History, Kassens, H., Bauch, H.A., Dmitrenko, I.A., Ed, Berlin: Springer, 1999.Google Scholar
  27. Lubinski, D.J., Polyak, L.A., and Forman, S.L., Freshwater and Atlantic water inflows to the deep Northern Barents and Kara seas since ca 13 14C ka: foraminifera and stable isotopes, Quatern. Sci. Rev., 2001, vol. 20, pp. 1851–1879.CrossRefGoogle Scholar
  28. Lukina, T.G., Foraminifera of the Laptev Sea, Protistol., 2001, vol. 2, no. 2, pp. 105–122.Google Scholar
  29. Lukina, T.G., Peculiarities of distribution of the foraminiferal assemblages in the Laptev Sea, in Fauna i ekosistemy morya Laptevykh i sopredel’nykh glubokovodnykh uchastkov arkticheskogo basseina. Issledovaniya Fauny morei (Fauna and Ecosystems of the Laptev Sea and Adjacent Deep Waters of the Arctic Basin. The Study of Marine Fauna), 2004, vol. 54, no. 62, pp. 86–123.Google Scholar
  30. Matul, A.G., Khusid, T.A., Mukhina, V.V., et al., Recent and Late Holocene environments on the southeastern shelf of the Laptev Sea as inferred from microfossil data, Oceanol., 2007, vol. 47, no. 1, pp. 80–90.CrossRefGoogle Scholar
  31. Murray, J., Ecology and application of benthic foraminifera, New York: Cambridge Univ. Press, 2006.CrossRefGoogle Scholar
  32. Naidina, O.D. and Bauch, H.A., Early to Middle Holocene pollen record from the Laptev Sea (Arctic Siberia), Quatern. Int., 2011, vol. 229, nos. 1–2, pp. Ñ. 84–88.CrossRefGoogle Scholar
  33. Østby, K. and Nagy, J., Foraminiferal distribution in the Western Barents Sea, recent and Quaternary, Polar Res., 1982, vol. 1982, no. 1, pp. 53–87.CrossRefGoogle Scholar
  34. Pogodina, I.A., Taldenkova, E.E., Bauch, H.A., and Ovsepyan, Ya.S., Post-glacial evolution of the outer shelf zone of the Laptev Sea as evidenced from the benthic foraminifer data, in Geologiya i geoekologiya kontinental’nykh okrain Evrazii. Vyp. I (Geology and Geoecology of Continental Margins of the Eurasia. Iss. I), Moscow: Geos, 2009, pp. 74–88.Google Scholar
  35. Polyak, L., Korsun, S., Febo, L., et al., Benthic foraminiferal assemblages from the Southern Kara Sea, a riverinfluenced arctic marine environment, J. Foraminifer. Res., 2002, vol. 32, no. 3, pp. 252–273.CrossRefGoogle Scholar
  36. Polyak, L., Darby, D.A., Bischof, J.F., and Jakobsson, M., Stratigraphic constraints on Late Pleistocene glacial erosion and deglaciation of the Chukchi margin, Arctic Ocean, Quatern. Res., 2007, vol. 67, pp. 234–245.CrossRefGoogle Scholar
  37. Polyak, L., Alley, R., Andrews, J.T., et al., History of sea ice in the Arctic, Quatern. Sci. Rev., 2010, vol. 29, nos. 15–16, pp. 1757–1778.CrossRefGoogle Scholar
  38. Polyakova, Ye.I., Bauch, H.A., and Novichkova, T.S., Past changes in Laptev Sea water masses deduced from diatom and aquatic palynomorph assemblages, Global Planet. Change, 2005, vol. 48, nos. 1–3, pp. 208–222.CrossRefGoogle Scholar
  39. Polyakova, Ye.I., Klyuvitkina, T.S. Golovnina, E.A., et al., High-resolution reconstruction of Lena River discharge during the Late Holocene inferred from microalgae assemblages, Polarforschung, 2006, vol. 75, pp. 83–90.Google Scholar
  40. Rasmussen, T.L., Thomsen, E., Lubowska, M.A., et al., Paleoceanographic evolution of the SW Svalbard margin (76° N) since 20.000 14c yr BP, Quatern. Res, 2007, vol. 67, pp. 100–114.CrossRefGoogle Scholar
  41. Reimnitz, E., Dethleff, D., and Nürnberg, D., Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea, Mar. Geol., 1994, vol. 119, pp. 215–225.CrossRefGoogle Scholar
  42. Rudels, B., Jones, E.P., Schauer, U., and Eriksson, P., Atlantic sources of the Arctic Ocean surface and halocline waters, Polar Res., 2004, vol. 23, no. 2, pp. 181–208.CrossRefGoogle Scholar
  43. Shchedrina, Z.G., About foramainiferal fauna in Arctic seas of the USSR, in Tr. Arktic. Inst. (Proc. Arctic and Antarctic Res. Inst.), 1936, vol. 33, pp. 51–64.Google Scholar
  44. Sistema morya Laptevykh i prilegayushchikh arkticheskikh morei: sovremennye usloviya i paleoklimat (The System of the Laptev Sea and Adjacent Arctic Seas: Current Status and History of Development), Kassens, H., Lisitsyn, A.P., Tide, I., Eds., Moscow: Moscow State Univ., 2009 [in Russian].Google Scholar
  45. lubowska, M.A., Koç, N., Rasmussen, T.L., and Klitgaard-Kristensen, D., Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: evidence from the northern Svalbard continental margin, 80° N, Palaeoceanogr., 2005, vol. 20, PA4014.Google Scholar
  46. lubowska-Woldengen, M., Rasmussen, T.L., Koç, N., et al., Advection of Atlantic water to the western and northern Svalbard shelf since 17.500 cal yr BP, Quatern. Sci. Rev., 2007, vol. 26, pp. 463–478.CrossRefGoogle Scholar
  47. Spielhagen, R.F., Erlenkeuser, H., and Siegert, C., History of freshwater runoff across the Laptev Sea (Arctic) during the last deglaciation, Global Planet. Change, 2005, vol. 48, nos. 1–3, pp. 187–207.Google Scholar
  48. Steinsund, P.I. and Hald, M., Recent calcium carbonate dissolution in the Barents Sea: paleoceanographic applications, Mar. Geol., 1994, vol. 117, pp. 303–316.CrossRefGoogle Scholar
  49. Stepanova, A.Yu., Late Pleistocene–Holocene and recent ostracoda of the Laptev sea and their importance for paleoenvironmental reconstructions, Monogr. Suppl. Iss. Rus. Paleontol. J., 2006, vol. 40, no. 2, pp. 91–204.Google Scholar
  50. Stepanova, A.Yu., Taldenkova, E.E., and Bauch, H.A., Ostracod palaeoecology and environmental change in the Laptev and Kara seas (Siberian Arctic) during the last 18000 years, Boreas, 2012, vol. 41, no. 4, pp. 557–577.CrossRefGoogle Scholar
  51. Svendsen, J.I., Alexanderson, H., Astakhov, V.I., et al., Late Quaternary ice sheet history of Eastern Eurasia, Quatern. Sci. Rev., 2004, vol. 23, pp. 1229–1271.CrossRefGoogle Scholar
  52. Taldenkova, E., Bauch, H.A., Stepanova, A., et al., Last postglacial environmental evolution of the Laptev sea shelf as reflected in molluscan, ostracodal and foraminiferal faunas, Global Planet. Change, 2005, vol. 48, nos. 1–3, pp. 223–251.CrossRefGoogle Scholar
  53. Taldenkova, E., Bauch, H.A., Stepanova, A., et al., Postglacial to Holocene history of the Laptev sea continental margin: palaeoenvironmental implications of benthic assemblages, Quatern. Int., 2008, vol. 183, pp. 40–60.CrossRefGoogle Scholar
  54. Taldenkova, E.E., Bauch, H.A., Stepanova, A.Yu., et al., Last postglacial environmental evolution of Laptev and Kara sea shelves as reflected in fossil benthic fauna, in Sistema morya Laptevykh i prilegayushchikh arkticheskikh morei: sovremennye usloviya i paleoklimat (The System of the Laptev Sea and Adjacent Arctic Seas: Current Status and Paleoclimate), Moscow: Moscow Sate Univ., 2009, pp. 384–409.Google Scholar
  55. Taldenkova, E., Bauch, H.A., Gottschalk, J., et al., History of ice-rafting and water mass evolution at the North Siberian continental margin (Laptev Sea) during late glacial and Holocene times, Quatern. Sci. Rev., 2010, vol. 29, pp. 3919–3935.CrossRefGoogle Scholar
  56. Taldenkova, E., Bauch, H.A., Stepanova, A., et al., Benthic community changes at the North Siberian margin in response to Atlantic water mass variability since last deglacial times, Marine Micropaleontol., 2012, vol. 96–97, pp. 13–28.CrossRefGoogle Scholar
  57. Tamanova, S.V., Species composition of modern foraminifera as an indication of the Arctic sea’s hydrological regime, in Severnyi Ledovityi okean i ego poberezh’e v kainozoe (The Arctic Ocean and its Coast in the Cenozoic Era), Leningrad: Gidrometeoizdat, 1970, pp. 199–203.Google Scholar
  58. Tamanova, S.V., Foraminifers of the Laptev Sea, in Geologiya morya (Marine Geology), Leningrad: NIIGA, 1971, Iss. 1, pp. 54–63.Google Scholar
  59. Todd, R. and Low, D., Foraminifera from the Arctic Ocean off the Eastern Siberian coast, U.S. Geol. Surv. Prof. Pap., 1966, no. 550, pp. 79–85.Google Scholar
  60. Volkmann, R., Planktic foraminifers in the outer Laptev Sea and the Fram Strait–modern distribution and ecology, J. Foraminifer. Res., 2000, vol. 30, no. 3, pp. 157–176.CrossRefGoogle Scholar
  61. Wollenburg, J. and Mackensen, A., Living benthic foraminifers from the central Arctic Ocean: faunal composition, standing stock, and diversity, Marine Micropaleontol., 1998, vol. 34, nos. 3–4, pp. 153–185.CrossRefGoogle Scholar
  62. Wollenburg, J.E., Knies, J., and Mackensen, A., High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean, Palaeogeogr. Palaeoclim. Palaeoecol., 2004, vol. 204, pp. 209–238.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Ya. S. Ovsepyan
    • 1
  • E. E. Taldenkova
    • 2
  • H. A. Bauch
    • 3
    • 4
  • E. S. Kandiano
    • 4
  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Mainz AcademyBerlinGermany
  4. 4.Helmholtz Center for Ocean ResearchKielGermany

Personalised recommendations