Stratigraphy and Geological Correlation

, Volume 21, Issue 3, pp 265–279 | Cite as

Balanoglossites ichnofabrics from the Middle Ordovician Volkhov formation (St. Petersburg Region, Russia)

Article

Abstract

The limestone succession of the Middle Ordovician Volkhov Formation in the St. Petersburg region (Russia) exposes numerous horizons with firm- and hardgrounds below omission surfaces, which contain trace fossils attributable to the ichnogenus Balanoglossites Mägdefrau, 1932. Although known from the literature since 75 years, such trace fossils were previously only informally described as “Korrosionsgruben”, “Karandashi”, or ascribed to different ichnotaxa such as Trypanites, Arenicolites and Pseudopolydorites. Owing to their complexity and often high bioturbation density, the morphology of these trace fossils is difficult to capture. Ichnofabrics containing Balanoglossites triadicus were studied in detail from sawn rock faces, broken rock blocks and sectioned slabs, including those from historical buildings in St. Petersburg. Accordingly, different trace-fossil elements can be revealed in dependence on the original substrate consistency, reflecting various stages of lithification: Mineral-stained and Trypanites-perforated hardground surfaces are bioeroded with long elongated grooves which are assigned to the ichnogenus Sulcichnus. Subtle openings lead into the partly lithified limestone where they branch into complex galleries of B. triadicus. They are characterized by J-, U- and Y-shaped shafts and multiply branched tunnels, which gradually continue into the underlying firmground. Other portions of the ichnofabric only exhibit biodeformational structures or the strongly compacted and branched burrow networks Labyrintichnus, which is due to the original soft sediment consistency. Balanoglossites ichnofabrics demarcate certain omission surfaces within the Dikari Limestone and can be traced for more than 300 km, supporting the regional lithostratigraphical correlation. The trace maker of B. triadicus and related trace fossils is interpreted to be a eunicid polychate with the ability to bioerode and burrow the sediment. The studied material from the Ordovician is similar to the Balanoglossites from the type area, the Triassic of Germany, in many respects. B. triadicus is a very common trace fossil in Ordovician and other Palaeozoic rocks of Baltoscandia and North America but so far has been seldom identified as such but instead is commonly confused with Thalassinoides, from which, however, it differs in several aspects.

Keywords

Balanoglossites triadicus Thalassinoides ichnofabrics borings burrows eunicid polychaetes Middle Ordovician Baltoscandia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, J.G., Über cambrische und silurische phosphoritführende Gesteine aus Schweden, Bull. Geol. Inst. Upsala, 1896, vol. II, pp. 35–41.Google Scholar
  2. Bergström, S.M., Chen, Xu., Gutiérrez-Marco, J.C., and Dronov, A.V., The new chronostratigraphic classification of the Ordovician system and its relations to major series and stages and to δ13C chemostratigraphy, Lethaia, 2009, vol. 42, pp. 97–107.CrossRefGoogle Scholar
  3. Bertling, M., Braddy, S.J., Bromley, R.G., et al., Names for trace fossils: a uniform approach, Lethaia, 2006, vol. 39, pp. 265–286.CrossRefGoogle Scholar
  4. Brett, C.E. and Liddell, W.D., Preservation and paleoecology of a Middle Ordovician hardground community, Paleobiology, 1978, vol. 4, pp. 329–348.Google Scholar
  5. Carmona, N.B., Mángano, M.G., Buatois, L.A., and Ponce, J.J., Bivalve trace fossils in an Early Miocene discontinuity surface in Patagonia, Argentina: burrowing behavior and implications for ichnotaxonomy at the Firmground-Hardground divide, Palaeogeogr. Palaeoclimat. Palaeoecol., 2007, vol. 255, pp. 329–341.CrossRefGoogle Scholar
  6. Chamberlain, C.K., Ordovician and Devonian trace fossils from Nevada, Nevada Bureau of Mines and Geology, Bull., 1977, vol. 90, pp. 1–24.Google Scholar
  7. Dronov, A.V., Storm sedimentation in the Lower Ordovician carbonate-terrigenous deposits of the St. Petersburg Region, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 1998, vol. 73, no. 2, pp. 43–51.Google Scholar
  8. Dronov, A.V. and Holmer, L.E., Depositional sequences in the Ordovician of Baltoscandia, in Quo vadis Ordovician? Short Papers 8th Int. Symp. on the Ordovician System. Acta Univ. Carolinae. Geol., Kraft, P., and Fatka, O., Eds., 1999, vol. 43, pp. 133–136.Google Scholar
  9. Dronov, A.V., Koren, T.N., Tolmacheva, T.J., et al., “Volkhovian” as a name for the third global stage of the Ordovician system, in Ordovician from the Andes, Albanesi, G.L., Beresi, M.S., Peralta, S.H., Eds., INSUGEO. Ser. Correl. Geol., 2003, vol. 17, pp. 59–63.Google Scholar
  10. Dronov, A.V., Meidla, T., Ainsaar, L., and Tinn, O., The Billingen and Volkhov stages in the Northern East Baltic: detailed stratigraphy and lithofacies zonation, Proc. Estonian Acad. Sci. Geol., 2000, vol. 49, pp. 3–16.Google Scholar
  11. Dronov, A.V. and Mikuláš, R., Paleozoic ichnology of St. Petersburg Region. Field Guide. 4th Int. Workshop on Ichnotaxonomy, Moscow, St. Petersburg, Trans. Geol. Inst., 2010, vol. 596, pp. 1–70.Google Scholar
  12. Dronov, A.V., Mikuláš, R., and Logvinova, M., Trace fossils and ichnofabrics across the Volkhov depositional sequence (Ordovician, Arenigian of St. Petersburg Region, Russia), J. Czech Geol. Soc., 2002, vol. 47, pp. 133–146.Google Scholar
  13. Dronov, A.V., Mikuláš, R., and Savitskaya, M., Gastrochaenolites oelandicus and similar borings and/or burrows in the Ordovician of Baltoscandia, in Abstr. Book: Workshop on Ichnotaxonomy-III, Prague and Moravia, Czech Republik, September 2006 Mikulšá, R. and Rindsberg, A., Eds., Prague: Inst. Geol., Acad. Sci. of the Czech Republic, 2006.Google Scholar
  14. Dronov, A.V. and Rozhnov, S., Climatic changes in the Baltoscandian basin during the Ordovician: sedimentological and palaeontological aspects, Acta Palaeontol. Sinica, 2007, vol. 46 (Suppl.), pp. 108–113.Google Scholar
  15. Dronov, A.V., Savitsky, J.V., Fedorov, P.V., and Tsyganova, E.A., Detailed lithostratigraphy of the Ordovician lower Volkhovian limestone along the Eastern part of the Baltic-Ladoga glint, northwestern Russia, GFF, 1996, vol. 118, pp. 19–24.CrossRefGoogle Scholar
  16. Dronov, A.V., Savitsky, J.V., and Tsyganova, E.A., Ordovician carbonates of the St. Petersburg region: stratigraphy of the Dikari unit, Vestn. SPbGU 1993, Ser. 7, no. 21, pp. 36–42.Google Scholar
  17. Ekdale, A. and Bromley, R., Bioerosional innovation for living in carbonate hardgrounds in the Early Ordovician of Sweden, Lethaia, 2001, vol. 34, pp. 1–12.CrossRefGoogle Scholar
  18. Ekdale, A.A., Bromley, R.G., and Knaust, D., The ichnofabric concept, in Trace Fossils as Indicators of Sedimentary Environments: Developments in Sedimentology, vol. 64, Knaust, D. and Bromley R.G., Eds., Amsterdam: Elsevier, 2012.Google Scholar
  19. Gingras, M.K., MacMillan B., Balcom B.J. Visualizing the internal physical characteristics of carbonate sediments with magnetic resonance imaging and petrography, Bull. Can. Petrol. Geol., 2002, vol. 50, pp. 363–369.CrossRefGoogle Scholar
  20. Gingras, M.K., Mendoza, C.A., and Pemberton, S.G., Fossilized worm burrows influence the resource quality of porous media, AAPG Bull., 2004a, vol. 88, pp. 875–883.CrossRefGoogle Scholar
  21. Gingras, M.K., Pemberton, S.G., Muelenbachs, K., and Machel, H., Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada, Geobiol., 2004b, no. 2, pp. 21–30.Google Scholar
  22. Goldring, R. and Kažmierczak, J., Ecological succession in intraformational hardground formation, Palaeontology, 1974, vol. 17, pp. 949–962.Google Scholar
  23. Hecker, R.F., Fossil facies of smooth, rocky sea-floors, Tr. Inst. Geol. Estonskoi SSR, 1960, no. 5, pp. 199–227.Google Scholar
  24. Hints, O. and Eriksson, M.E., Ordovician Polychaeturid Polychaetes: taxonomy, distribution and palaeoecology, Acta Palaeontol. Polonica, 2010, vol. 55, pp. 309–320.CrossRefGoogle Scholar
  25. Jin, J., Harper, D.A.T., Rasmussen, J.A., and Sheehan, P.M., Late Ordovician massive-bedded thalassinoides ichnofacies along the palaeoequator of Laurentia, Palaeogeogr. Palaeoclimat. Palaeoecol., 2011, vol. 367–368, pp. 73–88.Google Scholar
  26. Kendall, A.C., Origin of dolomite mottling in Ordovician limestones from Saskatchewan and Manitoba, Bull. Can. Petrol. Geol., 1977, vol. 25, pp. 480–504.Google Scholar
  27. Knaust, D., Invertebrate trace fossils and ichnodiversity in shallow-marine carbonates of the German Middle Triassic (Muschelkalk), in Sediment-Organism Interactions: a Multifaceted Ichnology. SEPM Spec. Publ., Bromley, R.G., Buatois, L.A., Mangano, M.G., et al., Eds., 2007, vol. 88, pp. 221–238.Google Scholar
  28. Knaust, D., Balanoglossites Mägdefrau, 1932 from the Middle Triassic of Germany: part of a complex trace fossil probably produced by burrowing and boring polychaetes, Paläg ontologische Zeitschrift., 2008, vol. 82, pp. 347–372.CrossRefGoogle Scholar
  29. Knaust, D. and Costamagna, L.G., Ichnology and sedimentology of the Triassic carbonates of North-West Sardinia, Italy, Sedimentology, 2012, vol. 59, pp. 1190–1207.CrossRefGoogle Scholar
  30. Knaust, D., Dronov, A.V., and Curran, H.A., Shallowmarine carbonates, in Trace Fossils as Indicators of Sedimentary Environments: Developments in Sedimentology, vol. 64, Knaust, D. and Bromley, R.G., Eds., Amsterdam: Elsevier, 2012.Google Scholar
  31. Lamansky, V.V., Drevneishie sloi siluriiskikh otlozhenii Rossii (Ancient layers of Silurian deposits of Russia), St. Petersburg, 1905, 203 p. [in Russian].Google Scholar
  32. Loutit, T.S., Hardenbol, J., Vail, P.R., and Baum, G.R., Condensed sections: the key to age dating and correlation of continental margin sequences, in Sea-level Changes—an Integrated Approach. SEPM Spec. Publ., 1988, no. 42, pp. 183–216.Google Scholar
  33. Mägdefrau, K., Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena, Palägntologische Zeitschrift, 1932, vol. 14, pp. 150–160.Google Scholar
  34. Männil, R.M., O vertikal’nykh norkakh zaryvaniya v ordovikskikh izvestnyakakh Pribaltiki (On vertical burrows in the Ordovician limestones of the Peribaltic), in Organizm i Sreda v Geologicheskom Proshlom (Organism and Environment in the Geological Past), Moscow: Nauka, 1966a, pp. 200–206 [in Russian].Google Scholar
  35. Männil, R.M., Istoriya razvitiya Baltiiskogo basseina v ordovike (History of the Baltic Basin Evolution in the Ordovician), Tallinn: Valgus, 1966b, pp. 1–210 [in Russian].Google Scholar
  36. Männil, R.M., Pylma, L., and Einasto, R., Ordovician and Silurian vertebrate trace fossils in from the Baltic: their taxonomy and distribution in Sledy zhizni i dinamika sredy v drevnikh biotopakh. Tez. Dokl. XXX Sess. Vsesoyuz. Paleontol. Obsch., 23–27 yanvaryua 1984 g. (Signs of vital activity and environment’s dynamics in the ancient biotops. Proc. XXX Sess. All-Union Paleontol. Soc., January 23–27. 1984), Kruchinin, N.V. and Modzalevskaya, T.L., Eds., L’vov: AN SSSR, 1984, pp. 54–55.Google Scholar
  37. Martinell, J. and Domènech, R., Commensalism in the fossil record: Eunicid polychaete bioerosion on Pliocene solitary corals, Acta Palaeontol. Polon., 2009, vol. 54, pp. 143–154.CrossRefGoogle Scholar
  38. Mikuláš, R. and Dronov, A.V., Early Ordovician of the Baltic Region: a birthplace of modern bioerosion and complex ichnofabrics? in Ichnia 2004. 1st Int. Congr. on Ichnol., Argentina. Abstract Book, 2004a, pp. 57–58.Google Scholar
  39. Mikuláš, R and Dronov, A.V., Description vs. interpretation: problem of small rounded pits and shafts of the Early Ordovician hard substrates (St. Petersburg Region, Russia), in 4th Int. Bioerosion Workshop. Abstract Book, Mikuláš, R., Ed., Inst. Geol. Akad. Nauk Czech Republic, Praha, 2004b, pp. 44–45.Google Scholar
  40. Mikuláš, R. and Dronov, A.V., Trace fossils in Cambrian and Ordovician of St. Petersburg Region. Guidebook for the Pre-Conf. Field Trip. 6th Baltic Stratigr. Conf., St. Petersburg, Dronov, A.V., Tolmacheva T., Raevskaya E., Eds., 2005, pp. 33–38.Google Scholar
  41. Mikuláš, R. and Dronov, A.V., Paleoichnology—Introduction to the Study of Trace Fossils, Praga: Geol. Inst. Akad. Nauk Cheshskoi Resp., 2006, pp. 1–122.Google Scholar
  42. Orviku, K.O., Lithologie der Tallinna-Serie (Ordovizium, Estland), I. Ibidem. Tartu, 1940, no. 58, pp. 1–249.Google Scholar
  43. Orviku, K., On the lithostratigraphy of the Volkhov and Kunda stages in Estonia, Tr. Inst. Geol. Estonskoi SSR, 1960, vol. 5, pp. 45–87.Google Scholar
  44. Palmer, T.J., Burrows at certain omission surfaces in the Middle Ordovician of the Upper Mississippi Valley, J. Paleontol., 1978, vol. 52, pp. 109–117.Google Scholar
  45. Schmidt, F., Untersuchungen über die silurische Formation von Esthland, Nord-Livland und Oesel, Arch. Naturkd. Liv-, Ehst- u. Kurl., 1858, Ser. 1, pp. 1–248.Google Scholar
  46. Selivanova, V.A. and Kofman, L.R. (Eds.) Geologiya SSSR, T.1. Leningradskaya, Pskovskaya i Novgorodskaya oblasti. Geologicheskoe opisanie (Geology of the USSR, V.1, Part 1. Leningrad, Pskov and Novgorod Regions. Geological descriptions). Moscow, Nedra, 1971, 302 p. [in Russian]Google Scholar
  47. Sheehan, P.M. and Schiefelbein, D.R.J., The trace fossil Thalassinoides from the Upper Ordovician of the Eastern Great Basin: deep burrowing in the Early Paleozoic, J. Paleontol., 1984, vol. 58, pp. 440–447.Google Scholar
  48. Vishniakov, S.G. and Hecker, R.F., Erosion marks and intrastratal disturbances in Lower Silurian glauconitic limestones of the Leningrad Region, in Yubileinyi sbornik v chest’ N.F. Pogrebova (N.F. Pogrebov Jubilee volume), Leningrad, 1937, pp. 30–45.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Statoil ASAStavangerNorway
  2. 2.Geological Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations