Stratigraphy and Geological Correlation

, Volume 20, Issue 6, pp 501–515 | Cite as

The Sr isotope composition of the world ocean, marginal and inland seas: Implications for the Sr isotope stratigraphy

  • A. B. KuznetsovEmail author
  • M. A. Semikhatov
  • I. M. Gorokhov


We studied the Sr isotope composition of shells of modern shallow-water mollusks and coral fragments. Twenty five of the studied samples were collected in beach zones of open oceans and marginal seas; twelve and eight additional samples are from saline and freshened inland seas respectively. The 87Sr/86Sr ratio in samples from the Atlantic, Indian, and Pacific oceans and their marginal seas corresponds on average to 0.709202 ± 0.000003 and coincides with the average ratio in the standard USGS EN-1 sample. The average 87Sr/86Sr ratio in inner parts of evaporite subbasins of the Mediterranean and Red seas is identical to that of the oceanic water. In shells of shallow-water mollusks from the Black Sea and Sea of Azov, where the degree of seawater dilution by riverine runoff is as high as 50 to 70%, the 87Sr/86Sr ratio is lower than that in the oceans by only a value of 0.00002 on average. As oceanic waters penetrated into these freshwater basins no earlier than in the Holocene, we conclude that the Sr isotopic equilibration with the oceanic water is realized very rapidly in the epicontinental seas even under conditions of restricted water exchange with the World Ocean. The established uniformity of the Sr isotope composition in all geographic types of currently existing sea basins open to the World Ocean proves the efficiency of the Sr isotope stratigraphy in correlation of contemporaneous chemogenic sediments.


strontium isotopes shells of modern mollusks ocean marginal seas inland seas paleogeography strontium isotope stratigraphy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albarede, F., Michard, A., Minster, J.F., and Michard, G., 87Sr/86Sr Ratios in Hydrothermal Waters and Deposits from the East Pacific Rise at 21°N, Earth Planet. Sci. Lett., 1981, vol. 55, no. 2, pp. 229–236.CrossRefGoogle Scholar
  2. Allègre, C.J., Louvat, P., Gaillardet, J., et al., The Fundamental Role of Island Arc Weathering in the Sr Isotope Budget, Earth Planet. Sci. Lett., 2010, vol. 292, nos. 1–2, pp. 51–56.CrossRefGoogle Scholar
  3. Anisimova, S.A., Baikalian Series (Riphean) of the Stratotype Area (Southwest Pribaikalie), Extended Abstract of Cand. Sci. (Geol.-Min.) Dissertation, Irkutsk, 2005.Google Scholar
  4. Bach, W. and Humphris, S.E., Relationship Between the Sr and O Isotope Compositions of Hydrothermal Fluids and the Spreading and Magma-Supply Rates at Oceanic Spreading Centers, Geology, 1999, vol. 27, no. 12, pp. 1067–1070.CrossRefGoogle Scholar
  5. Balabanov, I.P. and Izmailov, Yu.A., Changes in Level and Hydrochemical Regime of the Black Sea and the Sea of Azov during the Last 20 ka, Vodn. Resur., 1988, vol. 15, no. 4, pp. 539–546.Google Scholar
  6. Bogrov, V.E., Plankton Mirovogo okeana (Plankton of the World Ocean), Moscow: Nauka, 1974 [in Russian].Google Scholar
  7. Bol’shaya geograficheskaya entsiklopediya (Big Geographic Encyclopedia), Moscow: Eksmo, 2007 [in Russian].Google Scholar
  8. Bosworth, W., Huchon, P., and McClay, K., The Red Sea and Gulf of Aden Basins, J. African Earth Sci., 2005, vol. 43, nos.1–3, pp. 334–378.Google Scholar
  9. Brand, U. and Veizer, J., Chemical Diagenesis of a Multicomponent Carbonate System—1. Trace Elements, J. Sediment. Petrol., 1980, vol. 50, no. 4, pp. 1219–1236.Google Scholar
  10. Brand, U., Morrison, J.O., Brand, N., and Brand, E., Isotopic Variation in the Shells of Recent Marine Invertebrates from the Canadian Pacific Coast, Chem. Geol., 1987, vol. 65, no. 2, pp. 137–145.CrossRefGoogle Scholar
  11. Brand, U., Logan, A., Hiller, N., and Richardson, J., Geochemistry of Modern Brachiopods: Applications and Implications for Oceanography and Paleoceanography, Chem. Geol., 2003, vol. 198, nos. 3–4, pp. 305–334.CrossRefGoogle Scholar
  12. Brass, G.W. and Turekian, K.K., Strontium Distribution in Sea Water Profiles from the Geosecs I (Pacific) and Geosecs II (Atlantic) Test Stations, Earth Planet. Sci. Lett., 1972, vol. 16, no. 1, pp. 117–121.CrossRefGoogle Scholar
  13. Brass, G.W. and Turekian, K.K., Strontium Distribution in Geosecs Oceanic Profiles, Earth Planet. Sci. Lett., 1974, vol. 23, no. 1, pp. 141–148.CrossRefGoogle Scholar
  14. Brass, G.W., The Variation of the Marine 87Sr/86Sr Ratio during Phanerozoic Time: Interpretation Using a Flux Model, Geochim. Cosmochim. Acta, 1976, vol. 40, no. 7, pp. 721–730.CrossRefGoogle Scholar
  15. Bruckner, H., Kelterbaum, D., Marunchak, O., et al., The Holocene Sea Level Story Since 7500 BP—Lessons from the Eastern Mediterranean, the Black and Azov Seas, Quaternary International, 2010, vol. 225, no. 2, pp. 160–179.CrossRefGoogle Scholar
  16. Burke, W.H., Denison, R.E., Hetherington, E.A., et al., Variation of Seawater 87Sr/86Sr Throughout Phanerozoic Time, Geology, 1982, vol. 10, no. 10, pp. 516–519.CrossRefGoogle Scholar
  17. Capo, R.C. and DePaolo, D.J., Homogeneity of Sr Isotopes in the Oceans, EOS. Trans. AGU, 1992, vol. 73, no. 43 (Fall Meeting Suppl.).Google Scholar
  18. Cartwright, I., Weaver, T., and Petrides, B., Controls on 87Sr/86Sr Ratios of Groundwater in Silicate-Dominated Aquifers: SE Murray Basin, Australia, Chem. Geol., 2007, vol. 246, nos. 1–2, pp. 107–123.CrossRefGoogle Scholar
  19. Chaudhuri, S. and Clauer, N., Fluctuations of Isotopic Composition of Strontium in Seawater during Phanerozoic Eon, Chem. Geol., 1986, vol. 59, no. 4, pp. 293–303.CrossRefGoogle Scholar
  20. Chaudhuri, S. and Clauer, N., Strontium Isotopic Compositions and Potassium and Rubidium Contents of Formation Waters in Sedimentary Basins: Clues to the Origin of the Solutes, Geochim. Cosmochim. Acta, 1993, vol. 57, no. 3, pp. 429–437.CrossRefGoogle Scholar
  21. Clauer, N. and Olafsson, J., Note Breve: Islandic Thermal Brines with a Mantle Sr Isotopic Signature, Sci. Geol. Bull., Strasbourg, 1981, vol. 34, no. 4, pp. 243–245.Google Scholar
  22. Debolskaya, E.I., Yakushev, E.V., and Kuznetsov, I.S., Analysis of the Hydrophysical Structure of the Sea of Azov in the Period of the Bottom Anoxia Development, J. Marine Systems, 2008, vol. 70, nos. 3–4, pp. 300–307.CrossRefGoogle Scholar
  23. Denison, R.E., Koepnick, R.B., Fletcher, A., et al., Criteria for the Retention of Original Seawater 87Sr/86Sr in Ancient Shelf Limestones, Chem. Geol., 1994, vol. 112, nos. 1–2, pp. 131–143.CrossRefGoogle Scholar
  24. Denison, R.E., Koepnick, R.B., Burke, W.H., et al., Construction of the Silurian and Devonian Seawater 87Sr/86Sr Curve, Chem. Geol., 1997, vol. 140, nos. 1–2, pp. 109–121.CrossRefGoogle Scholar
  25. DePaolo, D.J., Detailed Record of the Neogene Sr Isotopic Evolution of Seawater from DSDP Site 590B, Geology, 1986, vol. 14, no. 2, pp. 103–106.CrossRefGoogle Scholar
  26. Dercourt, J., Zonenshain, L.P., Ricou, L.-E., et al., Geological Evolution of the Tethys Belt from the Atlantic to the Pamirs Since the Lias, Tectonophysics, 1986, vol. 123, nos. 1–4, pp. 241–315.CrossRefGoogle Scholar
  27. Drever, J.I., The Geochemistry of Natural Water, Cambridge: Prentice-Hall, 1982.Google Scholar
  28. Elderfield, H. and Greaves, M.J., Strontium Isotope Geochemistry of Icelandic Geothermal Systems and Applications for Water Chemistry, Geochim. Cosmochim. Acta, 1981, vol. 45, no. 11, pp. 2201–2212.CrossRefGoogle Scholar
  29. Elderfield, H., Strontium Isotope Stratigraphy, Palaeogeogr. Palaeoclimatol. Palaeoecol., 1986, vol. 57, no. 1, pp. 71–90.CrossRefGoogle Scholar
  30. Ewald, H., Garbe, S., and Ney, P., Die Isotopen-Zusammensetzung von Sr aus Meerwasser und Rb-Armen Gesteinen, Z. Naturforsch., A: Phys. Sci., 1956, vol. 11, no. 6, pp. 521–522.Google Scholar
  31. Faure, G., Principles of Isotope Geology, New York: Willey & Sons, 1977.Google Scholar
  32. Faure, G., The Marine-Strontium Geochronometer in Numerical Dating in Stratigraphy. Part I, New York: Wiley & Sons, 1982, pp. 73–79.Google Scholar
  33. Faure, G., Crocket, J.H., and Hurley, P.M., Some Aspects of the Geochemistry of Strontium and Calcium in the Hudson Bay and the Great Lakes, Geochim. Cosmochim. Acta, 1967, vol. 31, no. 3, pp. 451–461.CrossRefGoogle Scholar
  34. Faure, G., Hurley, P.M., and Powell, J.K., The Isotopic Composition of Strontium in Surface Water from the North Atlantic Ocean, Geochim. Cosmochim. Acta, 1965, vol. 29, no. 4, pp. 209–220.CrossRefGoogle Scholar
  35. Fiege, K., Miller, C.A., Robinson, L.F., et al., Strontium Isotopes in Chilean Rivers: The Flux of Unradiogenic Continental Sr to Seawater, Chem. Geol., 2009, vol. 268, nos. 3–4, pp. 337–343.CrossRefGoogle Scholar
  36. Fietzke, J., Liebetrau, V., Gunter, D., et al., An Alternative Data Acquisition and Evaluation Strategy for Improved Isotope Ratio Precision Using LA-MC-ICP-MS Applied to Stable and Radiogenic Strontium Isotopes in Carbonates, J. Anal. Atomic Spectrometry, 2008, vol. 23, pp. 955–961.CrossRefGoogle Scholar
  37. Fisher, R.S. and Stueber, A.M., Strontium Isotopes in Selected Streams within the Susquehanna River Basin, Water Resource Res., 1976, vol. 12, no. 5, pp. 1061–1068.CrossRefGoogle Scholar
  38. Galy, A., France-Lanord, C., and Derry, L.A., The Strontium Isotopic Budget of Himalayan Rivers in Nepal and Bangladesh, Geochim. Cosmochim. Acta, 1999, vol. 63, nos. 13–14, pp. 1905–1925.CrossRefGoogle Scholar
  39. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr Isotopic Systematics of River Water Suspended Material: Implications for Crustal Evolution, Earth Planet. Sci. Lett., 1988, vol. 87, no. 3, pp. 249–265.CrossRefGoogle Scholar
  40. Gorokhov, I.M., Semikhatov, M.A., Baskakov, A.V., et al., Sr Isotope Composition in Riphean, Vendian, and Lower Cambrian Carbonate Rocks of Siberia, Stratigr. Geol. Correlation, 1995, vol. 3, no. 1, pp. 1–28.Google Scholar
  41. Gorokhov, I.M., Diagenesis of Carbonate Sediments: Behavior of Trace Elements and Strontium Isotopes, Litol. Paleogeogr., 1996, no. 4, pp. 141–164.Google Scholar
  42. Hamilton, E.I., The Isotopic Composition of Strontium in Atlantic Ocean Water, Earth Planet. Sci. Lett., 1966, vol. 1, nos. 5–6, pp. 435–436.CrossRefGoogle Scholar
  43. Han, G. and Liu, C.-Q., Water Geochemistry Controlled by Carbonate Dissolution: A Study of the River Waters Draining Karst-Dominated Terrain, Guizhou Province, China, Chem. Geol., 2004, vol. 204, nos. 1–2, pp. 1–21.CrossRefGoogle Scholar
  44. Hedge, C.E. and Walthall, F.G., Radiogenic Strontium-87 as an Index to Geologic Processes, Science, 1963, vol. 140, no. 3572, pp. 1214–1217.CrossRefGoogle Scholar
  45. Hodell, D.A., Mead, G.A., and Mueller, P.A., Variation in the Strontium Isotopic Composition of Seawater (8 Ma to Present): Implications for Chemical Weathering Rates and Dissolved Fluxes to the Oceans, Chem. Geol., 1990, vol. 80, no. 4, pp. 291–307.Google Scholar
  46. Hodell, D.A., Mueller, P.A., McKenzie, J.A., and Mead, G.A., Strontium Isotope Statigraphy and Geochemistry of the Late Neogene Ocean, Earth Planet. Sci. Lett., 1989, vol. 92, no. 2, pp. 165–178.CrossRefGoogle Scholar
  47. James, N.P. and Choquette, P.W., Diagenesis 6. Limestones—The Sea Floor Diagenetic Environment, Geosci. Canada, 1983, vol. 10, no. 4, pp. 162–179.Google Scholar
  48. Jones, C.E., Jenkyns, H.C., Coe, A.L., and Hesselbo, S.P., Strontium Isotope Variations in Jurassic and Cretaceous Seawater, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 14, pp. 3061–3074.CrossRefGoogle Scholar
  49. Kaplin, P.A. and Selivanov, A.O., Lateglacial and Holocene Sea Level Changes in Semi-Enclosed Seas of North Eurasia: Examples from the Contrasting Black and White Seas, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2004, vol. 209, nos. 1–4, pp. 19–36.CrossRefGoogle Scholar
  50. Koepnick, R.B., Burke, W.H., Denison, R.E., et al., Construction of the Seawater 87Sr/86Sr Curve for the Cenozoic and Cretaceous: Supporting Data, Chem. Geol. (Isotope Geosci. Section), 1985, vol. 58, nos. 1–2, pp. 55–81.CrossRefGoogle Scholar
  51. Krabbenhoft, A., Eisenhauer, A., Bohm, F., et al., Constraining the Marine Strontium Budget with Natural Isotope Fractionations (87Sr/86Sr, δ88/86Sr) of Carbonates, Hydrothermal Solutions and River Waters, Geochim. Cosmochim. Acta, 2010, vol. 74, no. 14, pp. 1097–4109.CrossRefGoogle Scholar
  52. Kramchaninov, A.Yu., Dubinina, E.O., and Shatagin, K.N., First Study Results of the Natural Variations in the 88Sr/86Sr in Carbonated from the Hydrotermal Field of Lost City (30°N MAR), in Izotopnye sistemy i vremya geologicheskikh protsessov. Mat. IV Rossiiskoi konferentsii po izotopnoi geokhronologii. T. I (Isotope Systems and Time of Geological Processes. Proc. IV Russ. Conf. on Isotope Geochronology. Part I), St. Petersburg: IP Katalkina, 2009, pp. 277–279.Google Scholar
  53. Kuznetsov, A.B., Konstantinova, G.V., Mel’nikov, N.N., and Turchenko, T.L., Sr Isotope Composition in Iinland Seas of the Mediterranean-Black Sea Belt, Dokl. Akad. Nauk, 2011, vol. 439, no. 3, pp. 399–402.Google Scholar
  54. Kuznetsov, A.B., Semikhatov, M.A., Gorokhov, I.M., et al., Sr Isotope Composition in Carbonates of the Karatau Group, Southern Urals, and Standard Curve of 87Sr/86Sr Variations in the Late Riphean Ocean, Stratigr. Geol. Correlation, 2003, vol. 11, no. 5, pp. 415–449.Google Scholar
  55. Kuznetsov, A.B., Semikhatov, M.A., Maslov, A.V., et al., New Data on Sr- and C-isotopic Chemostratigraphy of the Upper Riphean Type Section (Southern Urals), Stratigr. Geol. Correlation, 2006, vol. 14, no. 6, pp. 602–628.CrossRefGoogle Scholar
  56. Lericolais, G., Guichard, F., Morigi, C., et al., A Post Younger Dryas Black Sea Regression Indentified from Sequence Stratigraphy Correlated to Core Analyses and Dating, Quaternary International., 2010, vol. 225, no. 2, pp. 199–209.CrossRefGoogle Scholar
  57. Major, C.O., Goldstein, S.L., Ryan, W.B.F., et al., The Co-Evolution of Black Sea Level and Composition through the Last Deglaciation and Its Paleoclimatic Significance, Quaternary Sci. Rev., 2006, vol. 25, nos. 17/18, pp. 2031–2047.CrossRefGoogle Scholar
  58. Matishov, G.G., Matishov, D.G., Namjatov, A.A., et al., Artificial Radionuclides in Sediments of the Don River Estuary and Azov Sea, J. Environ. Radioactivity, 2002, vol. 59, no. 3, pp. 309–327.CrossRefGoogle Scholar
  59. McArthur, J.M., Recent Trends in Strontium Isotope Stratigraphy, Terra Nova, 1994, vol. 6, no. 4, pp. 331–358.CrossRefGoogle Scholar
  60. McArthur, J.M., Howarth, R.J., and Bailey, T.R., Strontium Isotope Stratigraphy: LOWESS Version 3. Best-Fit Line to the Marine Sr Isotope Curve for 0 to 509 Ma and Accompanying Look-up Table for Deriving Numerical Age, J. Geol., 2001, vol. 109, no. 2, pp. 155–169.CrossRefGoogle Scholar
  61. McArthur, J.M., Rio, D., Massari, F., et al., A Revised Pliocene Record for Marine-87Sr/86Sr Used to Date an Interglacial Event Recorded in the Cockburn Island Formation, Antarctic Peninsula, Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, vol. 242, nos. 1/2, pp. 126–136.CrossRefGoogle Scholar
  62. Muller, D.W. and Mueller, P.A., Origin and Age of the Mediterranean Evaporates: Implications from Sr Isotopes, Earth Planet. Sci. Lett., 1991, vol. 107, no. 1, pp. 1–12.CrossRefGoogle Scholar
  63. Nier, A.O., The Isotopic Constitution of Strontium, Barium, Bismuth, Thallium and Mercury, Phys. Rev., 1938, vol. 5, pp. 275–279.CrossRefGoogle Scholar
  64. Oceans. A Visual Guide, Weldon Owen Inc., 2004.Google Scholar
  65. Palmer, M.R. and Edmond, J.M., The Strontium Isotope Budget of the Modern Ocean, Earth Planet. Sci. Lett., 1989, vol. 92, no. 2, pp. 11–26.CrossRefGoogle Scholar
  66. Palmer, M.R. and Elderfield, H., Sr Isotope Composition of Sea Water over the Past 75 Myr, Nature, 1985, vol. 314, no. 6011, pp. 526–528.CrossRefGoogle Scholar
  67. Pawellek, F., Frauenstein, F., and Veizer, J., Hydrochemistry and Isotope Geochemistry of the Upper Danube River, Geochim. Cosmochim. Acta, 2002, vol. 66, no. 21, pp. 3839–3854.CrossRefGoogle Scholar
  68. Peterman, Z.L., Hedge, C.E., and Tourtelot, H.A., Isotopic Composition of Strontium in Sea Water throughout Phanerozoic Time, Geochim. Cosmochim. Acta, 1970, vol. 34, no. 1, pp. 105–120.CrossRefGoogle Scholar
  69. Pingitore, N.E., The Behaviour of the Zn2+ and Mn2+ During Carbonate Diagenesis: Theory and Applications, J. Sediment. Petrol., 1978, vol. 48, no. 3, pp. 799–814.Google Scholar
  70. Rad, S.D., Allegre, C.J., and Louvat, P., Hidden Erosion on Volcanic Islands, Earth Planet. Sci. Lett., 2007, vol. 262, nos. 1–2, pp. 109–124.CrossRefGoogle Scholar
  71. Richter, F. and DePaolo, D.J., Numerical Models for Diagenesis and the Neogene Sr Isotopic Evolution of Seawater from DSDP Site 590B, Earth Planet. Sci. Lett., 1987, vol. 83, nos. 1–4, pp. 27–38.CrossRefGoogle Scholar
  72. Richter, F. and DePaolo, D.J., Diagenesis and Sr Isotopic Evolution of Seawater Using Data from DSDP Site 590B and 575, Earth Planet. Sci. Lett., 1988, vol. 90, no. 4, pp. 382–394.CrossRefGoogle Scholar
  73. Ross, D.A. and Degens, E.T., MacIlvaine, J., Black Sea: Recent Sedimentary History, Science, 1970, vol. 170, no. 3954, pp. 163–165.CrossRefGoogle Scholar
  74. Rouchy, J.M. and Martin, S.J., Late Miocene Events in the Mediterranean as Recorded by Carbonate Evaporate Relations, Geology, 1992, vol. 20, no. 7, pp. 629–632.CrossRefGoogle Scholar
  75. Ruggerberg, A., Fietzke, J., Liebetrau, V., et al., Stable Strontium Isotope 90 in Cold-Water Corals—A New Proxy for Reconstruction of Intermediate Ocean Water Temperatures, Earth Planet. Sci. Lett., 2008, vol. 269, nos. 3–4, pp. 570–575.CrossRefGoogle Scholar
  76. Rundberg, Y. and Smalley, P.C., High-Resolution Dating of Cenozoic Sediments from Northern North Sea Using 87Sr/86Sr Stratigraphy, Am. Ass. Petrol. Geol. Bull., 1989, vol. 73, no. 3, pp. 298–308.Google Scholar
  77. Ryu, J.-S., Lee, K.-S., Chang, H.-W., and Shin, H.S., Chemical Weathering of Carbonates and Silicates in the Han River Basin, South Korea, Chem. Geol., 2008, vol. 247, nos. 1–2, pp. 66–80.CrossRefGoogle Scholar
  78. Semikhatov, M.A. and Gorokhov, I.M., Behavior of Rubidium and Strontium in Sedimentary Processes, 1: Behavior of Rb and Sr during Weathering, Sediment Transport and Sedimentation, Litol. Polezn. Iskop., 1984, no. 1, pp. 3–26.Google Scholar
  79. Semikhatov, M.A., Kuznetsov, A.B., Gorokhov, I.M., et al., Low 87Sr/86Sr Ratios in Seawater of the Grenville and Post-Grenville Time: Determining Factors, Stratigr. Geol. Correlation, 2002, vol. 10, no. 1, pp. 1–41.Google Scholar
  80. Shillington, D.J., White, N., Minshull, T.A., et al., Cenozoic Evolution of the Eastern Black Sea: A Test of Depth-Dependent Stretching Models, Earth Planet. Sci. Lett., 2008, vol. 265, nos. 3–4, pp. 360–378.CrossRefGoogle Scholar
  81. Singh, S.K., Kumar, A., and France-Lanord, C., Sr and 87Sr/86Sr in Waters and Sediments of the Brahmaputra River System: Silicate Weathering, CO2 Consumption and Sr Flux, Chem. Geol., 2006, vol. 234, nos. 3–4, pp. 308–320.CrossRefGoogle Scholar
  82. Spooner, E.T.C., The Strontium Isotopic Composition of Seawater, and Seawater-Oceanic Crust Interaction, Earth Planet. Sci. Lett., 1976, vol. 31, no. 1, pp. 167–174.CrossRefGoogle Scholar
  83. Stanev, E.V., Staneva, J., Bullister, J.L., and Murray, J.W., Ventilation of the Black Sea Pycnocline. Parametrization of Convection, Numerical Simulations and Validations against Observed Chlorofluorocarbon Data, Deep-Sea Res., 2004, vol. 51, no. 12, pp. 2137–2169.CrossRefGoogle Scholar
  84. Stanevich, A.M., Mazukabzov, A.M., Postnikov, A.A., et al., Northern Segment of the Paleoasian Ocean: Neoproterozoic Deposition History and Geodynamics, Geol. Geofiz., 2007, vol. 48, no. 1, pp. 60–79.Google Scholar
  85. Stanevich, A.M., Microfossils in Late Proterozoic Stratigraphy of the Sayany-Baikal and Anabar-Olenek Regions, Extended Abstract of Doctoral (Geol.-Min.) Dissertation, Novosibirsk, 2011.Google Scholar
  86. Veizer, J. and Compston, W., 87Sr/86Sr Composition of Seawater during the Phanerozoic, Geochim. Cosmochim. Acta, 1974, vol. 38, no. 9, pp. 1461–1484.CrossRefGoogle Scholar
  87. Veizer, J. and Compston, W., 87Sr/86Sr in Precambrian Carbonates as an Index of Crustal Evolution, Geochim. Cosmochim. Acta, 1976, vol. 40, no. 8, pp. 905–914.CrossRefGoogle Scholar
  88. Veizer, J., Strontium Isotopes in Seawater Through Time, Ann. Rev. Earth Planet. Sci., 1989, vol. 17, pp. 141–167.CrossRefGoogle Scholar
  89. Vinogradov, M.E. and Lisitsyn, A.P., Global Regularities of Life Distribution in the Ocean and Their Reflection in Biogenic Sediments Composition. Formation, Izv. Akad. Nauk SSSR, Ser. Geol., 1981, no. 3, pp. 5–25.Google Scholar
  90. Wadleigh, M.A., Veizer, J., and Brooks, C., Strontium and Its Isotopes in Canadian Rivers: Fluxes and Global Implications, Geochim. Cosmochim. Acta, 1985, vol. 49, no. 8, pp. 1727–1736.CrossRefGoogle Scholar
  91. Widerlund, A. and Andersson, P.S., Strontium Isotopic Composition of Modern and Holocene Mollusk Shells as a Palaeosalinity Indicator for the Baltic Sea, Chem. Geol., 2006, vol. 232, nos. 1/2, pp. 54–66.CrossRefGoogle Scholar
  92. Yanko-Hombach, V., Gilbert, A.S., and Dolukhanov, P., Controversy Over the Great Flood Hypothesis in the Black Sea in Light of Geological, Paleontological and Archaeological Evidence, Quaternary International., 2007, vol. 167–168, pp. 91–113.CrossRefGoogle Scholar
  93. Zonenshain, L.P. and LePichon, X., Deep Basins of the Black Sea and Caspian Sea as Remnants of Mesozoic Back-Arc Basins, Tectonophysics, 1986, vol. 123, nos. 1–4, pp. 181–211.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. B. Kuznetsov
    • 1
    Email author
  • M. A. Semikhatov
    • 2
  • I. M. Gorokhov
    • 1
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations