Advertisement

The Yudomian of Siberia, Vendian and Ediacaran systems of the International stratigraphic scale

  • V. V. Khomentovsky
Article

Abstract

In Russia, the terminal Neoproterozoic formally includes the Vendian of western part of the East European platform and the concurrent Yudoma Group of Siberia. As is shown in this work, the designated subdivisions correspond in the stratotypes only to the upper, Yudomian Series of the Vendian. In the Siberian platform, the Ust-Yudoma and Aim horizons of the Yudomian are tightly interrelated. The lower of them, bearing remains of Ediacaran Fauna, represents the Ediacarian Stage, whereas the upper one containing small-shelled fossils (SSF) corresponds to the Nemakit-Daldynian Stage divided into the trisulcatus and antiqua superregional zones. In more complete sections of the platform periphery, sediments of these subdivisions conformably rest on siliciclastic succession that should be ranked as basal subdivision of the Yudomian. The succession is concurrent to the Laplandian Stage of the East European platform. According to geochronological dates obtained recently, the Yudomian Series spans interval of 600–540 Ma. In the East European platform, the Upper Vendian (Yudomian) begins with the Laplandian basal tillites of synonymous stage. In the west of the platform, tillites are dated at 600 Ma like the Upper Vendian base in Siberia. The next Ediacarian Stage of the East European platform is stratigraphic equivalent of the Redkino Horizon, while summary range of the Kotlin and Rovno horizons is concurrent to that of the Nemakit-Daldynian Stage. The Vendian of Russia is conformably overlain by the Tommotian Stage of the Lower Cambrian. Intense pre-Vendian events constrained distribution areas of the Lower Vendian sediments in Russia. The Lower Vendian deposits of the East European platform are most representative and well studied in the central Urals, where they are attributed to the Serebryanka Group. In Siberia, separate subdivisions representing the Lower Vendian are the Maastakh Formation of the Olenek Uplift, two lower members of the Ushakovka Formation in the Baikal region, and the Taseeva Group of the Yenisei Range. Chronological interval of the Lower Vendian corresponds to 650–600 Ma. The Marinoan Glaciation dated in Australia at 650–635 Ma is concurrent to basal part of the pre-Yudomian interval of the Vendian in Russia, whereas the Laplandian Tillite and Gaskiers Glaciation (600–580 Ma) correspond to onset of the Yudomian Epoch. The new Ediacaran System (Knoll et al., 2004) legalized in the International Neoproterozoic scale is close in range to the entire Vendian (635–544 Ma), although without basal beds (Marinoan Tillite) it deprives the terminal Neoproterozoic of its original sense. Inferiority of the system consists also in its indivisibility into stages. Hence, it is clear that the Vendian System subdivided in detail in Russia should be retained in the rank of terminal system of the Precambrian, one of the basic in general scale of the Neoproterozoic.

Key words

Vendian Yudomian terminal Precambrian Siberian and East European platforms paleontology geochronology chemostratigraphy event levels 

References

  1. 1.
    Yu. V. Amelin, E. Yu. Rytsk, R. Sh. Krymskii, et al., “Vendian Age of Enderbites Granulite Assemblage of Baikal-Muya Ophiolite Belt: U-Pb and Sm-Wd Isotope Data.” Dokl. Akad. Nauk 371(5), 652–654 (2000).Google Scholar
  2. 2.
    B. Aren’, V. Ya. Bessonova, A. Brangulis, et al., Stratigraphy of the Upper Cambrian and Cambrian Deposits of the West of the East European Platform (Nauka, Moscow) [in Russian].Google Scholar
  3. 3.
    S. A. Bowring, J. P. Grotzinger, C. E. Isachsen. et al., “Calibrating Rates of Early Cambrian Evolution,” Science. 261, 1293–1298 (1993).CrossRefGoogle Scholar
  4. 4.
    S. Bowring, P. Myrow, E. Landing, et al., “Geochronological Constraints on Terminal Neoproterozoic Events and the Rise of Metazoans,” Geophys. Res. Abstracts. 5(13), 290 (2003).Google Scholar
  5. 5.
    N. J. Butterfield, A. H. Knoll, and K. Swett, “Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen,” Fossils and Strata, No. 34, 1–84 (1994).Google Scholar
  6. 6.
    N. M. Chumakov, Precambrian Tillites and Tilloids (Nauka, Moscow, 1978) [in Russian].Google Scholar
  7. 7.
    N. M. Chumakov, “Global Climates of the Vendian,“ J. Earth Sci. 5(6), 381–399 (2003).Google Scholar
  8. 8.
    N. M. Chumakov, B. G. Pokrovskii, and V. A. Melezhik, “Geological History of the Late Precambrian Patom Supergroup (Central Siberia),” Dokl. Akad. Nauk 413(3), 383 (2007) [Dokl. Earth Sci. 413A, 343–346 (2007)].Google Scholar
  9. 9.
    P. Cloud and M. F. Glaessner, “The Ediacarian Period and System: Metazoa inherit the Earth,” Science. 217(4562), 783–792 (1982).CrossRefGoogle Scholar
  10. 10.
    W. Compston, M. S. Sambridge, R. F. Reinfrank, et al., “Numerical Ages of Volcanic Rocks and the Earliest Faunal Zone within the Late Precambrian of East Poland,” J. Geol. Soc. (London) 152, 599–611 (1995).CrossRefGoogle Scholar
  11. 11.
    D. Condon, M. Zhu, S. Bowring, et al., “U-Pb Age from the Neoproterozoic Doushantuo Formation, China,“ Science 308, 95–98 (2005).CrossRefGoogle Scholar
  12. 12.
    F. A. Corsetti and N. J. Lorentz, “On Neoproterozoic Cap Carbonates, as Chronostratigraphic Markers,” in Neoproterozoic Geobiology and Paleobiology (Berlin, Springer, 2006a), pp. 273–294.CrossRefGoogle Scholar
  13. 13.
    F. A. Corsetti, A. N. Olcott, and C. Bakermans, “The Biotic Response to Neoproterozoic Snowball Earth,“ Palaeogeogr., Palaeoclimatol., Palaeoecol. 232, 114–130 (2006b).CrossRefGoogle Scholar
  14. 14.
    M. L. Droser, S. James, and J. G. Gehling, “Trace Fossils and Substrates of the Terminal Proterozoic-Cambrian Transition: Implications for the Record of Early Bilaterans and Sediment Mixing,” PNAS 99(20), 12572–12576 (2002).CrossRefGoogle Scholar
  15. 15.
    Yu. K. Dzevanovskii, “Whether There is the Proterozoic on the East of the Aldan Plate,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 3, 38–51 (1943).Google Scholar
  16. 16.
    M. A. Fedonkin, Soft-Bodied Fauna of the Vendian and Its Place in the Metazoa Evolution (Nauka, Moscow, 1987) [in Russian].Google Scholar
  17. 17.
    D. P. Gladkochub, M. T. D. Wingate, S. A. Pisarevski et al., “Mafic Intrusions in Southwestern Siberia and Implication for Neoproterozoic Connection with Laurentia,“ Precambrian Res. 147(3–4), 260–278 (2006).CrossRefGoogle Scholar
  18. 18.
    M. B. Gnilovskaya, K. A. Mens, and E. A. Pirris, “Subdivision of the Upper Vendian into Horizons in the Stratotype Area,” in Stratigraphy of the Upper Proterozoic in the USSR (Riphean and Vendian) (Nauka, Leningrad, 1979), pp. 117–121 [in Russian].Google Scholar
  19. 19.
    K. Grey, M. R. Walter, and C. B. Calver, “Neoproterozoic Biotic Diversification: Snowball Earth or Aftermath of the Acraman Impact,” Geology 31(5), 459–462 (2003).CrossRefGoogle Scholar
  20. 20.
    J. P. Grotzinger, S. A. Bowring, B. Z. Saylor, and A. J. Kaufman, “Biostratigraphic and Geochronologic Constraints on Early Animal Evolution,” Science 270(15240), 598–604 (1995).CrossRefGoogle Scholar
  21. 21.
    G. P. Halverson, P. E. Hoffman, D. P. Schrag, et al., “Toward a Neoproterozoic Composite Carbon-Isotope Record,” GSA Bull. 117(9/10), 1181–1207 (2005).Google Scholar
  22. 22.
    K.-H. Hoffman, D. J. Condon, S. A. Bowring, and J. L. Crowley, “U-Pb Zircon Date from the Neoproterozoic Ghaub Formation, Namibia: Constrains of Marinoan Glaciation,” Geology 32(9), 817–820 (2004).CrossRefGoogle Scholar
  23. 23.
    P. F. Hoffman, A. J. Kaufman, G. P. Halverson, and D. P. Schrag, “Neoproterozoic Snowball Earth,” Science 281, 1342–1346 (1998).CrossRefGoogle Scholar
  24. 24.
    A. I. Ivanov, V. I. Lifshits, O. L. Perevalov, et al., Precambrian of the Patom Highland (Nedra, Moscow, 1995) [in Russian].Google Scholar
  25. 25.
    G. Jang, A. J. Kaufman, N. Cristie-Blick et al., “Carbon Isotope Variability for a Large Surface-to-Deep Ocean 13C Gradient,” Earth Planet. Sci. Lett. 261, 303–320 (2007).CrossRefGoogle Scholar
  26. 26.
    P. J. F. Jenkins, “The Concept of an ‘Ediacarian Period’ and Its Stratigraphic Significance in Australia,” Trans. R. Soc. South Australia. 105, 179–194 (1981).Google Scholar
  27. 27.
    A. J. Kaufman, S. B. Jacobson, and A. H. Knoll, “The Vendian Record of Sr, C-Isotopic Variations in Seawater: Implications for Tectonics and Paleoclimate,” Earth Planet. Sci. Lett. 120(4), 409–430 (1993).CrossRefGoogle Scholar
  28. 28.
    V. V. Khomentovsky, “On the Yudomian Complex and Problem of the Vendian in Siberia,” in The Vendian Analogs in Siberia (Nauka, Moscow, 1975), pp. 11–42 [in Russian].Google Scholar
  29. 29.
    V. V. Khomentovsky, “The Vendian,” (Nauka, Novosibirsk, 1976) [in Russian].Google Scholar
  30. 30.
    V. V. Khomentovsky, “On Illuviation of Small Fossils into Older Deposits and Related Problems of Stratigraphy,“ Geol. Geofiz., No. 1, 6–12 (1985).Google Scholar
  31. 31.
    V. V. Khomentovsky, “Vendian in the Siberian Platform,“ in Vendian System (Historical-Geological and paleontological Substantiation) (Nauka, Moscow, 1985), Vol. 2, pp. 83–161 [in Russian].Google Scholar
  32. 32.
    V. V. Khomentovsky, The Vendian System of Siberia and a Standard Stratigraphic Scale, Geol. Mag. 1986 123, 333–348.Google Scholar
  33. 33.
    V. V. Khomentovsky, “Vendian of the Siberian Platform,“ in The Vendian System, Vol. 2: Regional Geology (Springer, Berlin, 1990), pp. 102–183.Google Scholar
  34. 34.
    V. V. Khomentovsky, “On Geochronological Substantiation of the Vendian-Lower Cambrian Scale using the U-Pb Zircon Dates,” Geol. Geofiz. 41(4), 503–515 (2000).Google Scholar
  35. 35.
    V. V. Khomentovsky, “The Baikalian of Siberia (850–650 Ma),” Geol. Geofiz. 43(4), 313–333 (2002).Google Scholar
  36. 36.
    V. V. Khomentovsky, “Neoproterozoic of the North Siberian Craton,” Geol. Geofiz. 47(7), 865–880 (2006).Google Scholar
  37. 37.
    V. V. Khomentovsky, A. N. Didenko, and V. G. Pyatiletov, “General Conclusions Concerning Vendian Stratigraphy in the West Anabar Region,” in New Data on the Late Precambrian Stratigraphy in Siberia (IGiG SO RAN, Novosibirsk, 1982), pp. 3–30 [in Russian].Google Scholar
  38. 38.
    V. V. Khomentovsky, M. Sh. Faizullin, and G. A. Karlova, “The Nemakit-Daldynian Stage of the Vendian in the Southwest Siberian Platform,” Dokl. Akad. Nauk 362(6), 813–815 (1998) [Dokl. Earth Sci. 363 (8), 1075–1077 (1998)].Google Scholar
  39. 39.
    V. V. Khomentovsky, A. B. Fedorov, and G. A. Karlova, “The Lower Cambrian Boundary in Inner Areas of the North Siberian Platform,” Stratigr. Geol. Korrelyatsiya 6(1), 3–11 (1998) [Stratigr. Geol. Correlation 6 (1), 1–9 (1998)].Google Scholar
  40. 40.
    V. V. Khomentovsky and G. A. Karlova, “Biostratigraphy of the Vendian-Cambrian Beds and the Lower Cambrian Boundary in Siberia,” Geol. Mag. 130(1), 29–45 (1993).CrossRefGoogle Scholar
  41. 41.
    V. V. Khomentovsky and G. A. Karlova, “The Boundary between Nemakit-Daldynian and Tommotian Stages (Vendian-Cambrian Systems) of Siberia,” Stratigr. Geol. Korrelyatsiya 10(3), 13–34 (2002) [Stratigr. Geol. Correlation 10 (3), 217–238 (2002)].Google Scholar
  42. 42.
    V. V. Khomentovsky and G. A. Karlova, “The Tommotian Stage Base as the Cambrian Lower Boundary in Siberia,” Stratigr. Geol. Korrelyatsiya 13(1), 26–40 (2005) [Stratigr. Geol. Correlation 13 (1), 21–34 (2005)].Google Scholar
  43. 43.
    V. V. Khomentovsky and A. A. Postnikov, “Neoproterozoic Evolution of the Baikal-Vilyui Branch of the Paleoasian Ocean,” Geotektonika, No. 3, 3–21 (2001) [Geotectonics 35 (3), 149–164 (2001)].Google Scholar
  44. 44.
    V. V. Khomentovsky, A. A. Postnikov, G. A. Karlova, et al., “The Vendian of the Baikal-Patom Highland,“ Geol. Geofiz. 45(4), 465–484 (2004).Google Scholar
  45. 45.
    V. V. Khomentovsky, V. Yu. Shenfil’, and M. S. Yakshin, “On the Yudomian Complex of Siberia,” Geol. Geofiz., No. 3, 25–33 (1969).Google Scholar
  46. 46.
    V. V. Khomentovsky, V. Yu. Shenfil’, M. S. Yakshin, and E. Butakov, Reference Sections of the Upper Precambrian-Lower Cambrian Deposits in the Siberian Platform (Nauka, Moscow, 1972) [in Russian].Google Scholar
  47. 47.
    V. V. Khomentovsky, A. K. Val’kov, G. A. Karlova, and S. V. Nuzhnov, “Reference Section of the Precambrian-Cambrian Deposits at the Gonam River,” in Late Precambrian and Early Paleozoic of Siberia, Vendian Deposits (IGiG SO AN SSSR, Novosibirsk, 1983), pp. 29–44 [in Russian].Google Scholar
  48. 48.
    V. V. Khomentovsky, A. K. Val’kov, and G. A. Karlova, “new Data on Biostratigraphy of the Vendian-Cambrian Transitional Beds in Middle Reaches of the Aldan River,” in Problems of Regional Stratigraphy (IGiG SO AN, Novosibirsk, 1990), pp. 3–57 [in Russian].Google Scholar
  49. 49.
    A. H. Knoll, M. R. Walter, G. M. Narbonne, and N. Cristic-Blick, “A New Period for the Geologic Time Scale,” Science. 305, 621–622 (2004).CrossRefGoogle Scholar
  50. 50.
    A. H. Knoll, M. R. Walter, G. M. Narbonne, and N. Cristic-Blick, “The Ediacaran Period: a New Addition to the Geologic Time Scale,” Lethaea. 39, 13–30 (2006).CrossRefGoogle Scholar
  51. 51.
    S. P. Kolosova, “Late Precambrian Spinose Microfossils from the East Siberian Platform,” Algologiya 1(2), 53–59 (1991).Google Scholar
  52. 52.
    A. Kouchinsky, S. Bengston, V. Pavlov, et al., “Pre-Tommotian Age of Lower Pestrotsvet Formation in the Selende Section of Siberian Platform: Carbon Isotopic Evidence,” Geol. Mag. 142(4), 319–321 (2005).CrossRefGoogle Scholar
  53. 53.
    A. B. Kuznetsov, G. V. Ovchinikova, O. K. Kaurova, and E. F. Letnikova, “Pb-Pb Age and Sr Chemostratigraphy of Carbonate Deposits, the Baikal Group of the Southwest Baikal Region,” in III Russian Conference of Isotopic Geochronology (IGEM RAN, Moscow, 2006), Vol. I, pp. 362–365 [in Russian].Google Scholar
  54. 54.
    A. B. Kuznetsov, M. A. Semikhatov, I. M. Gorokhov, et al., “Sr Isotope Composition in Carbonates of the Karatau Group, Southern Urals, and Standard Curve of 87Sr/86Sr Variations in the Late Riphean Ocean,“ Stratigr. Geol. Korrelyatsiya 11(5), 3–39 (2003) [Stratigr. Geol. Correlation 11 (5), 415–449 (2003)].Google Scholar
  55. 55.
    J. Leather, A. A. Phlip, M. D. Brasier, and A. Cozzi, “Neoproterozoic Snowball Earth and Scrutiny: Evidence from the Fiq Glaciation of Oman,” Geology. 30(10), 891–894 (2002).CrossRefGoogle Scholar
  56. 56.
    V. A. Luchinina, V. V. Kir’yanov, and M. B. Gnilovskaya, “On Correlation of the Precambrian-Cambrian Boundary Deposits of the East European and Siberian Platforms,” Dokl. Akad. Nauk SSSR 240(5), 1184–1187 (1978).Google Scholar
  57. 57.
    A. S. Makhnach, N. V. Veritennikov, V. I. Shkuratov, and V. E. Bordon, The Vendian and Riphean of Belarus (Nauka i Tekhnika, Minsk, 1976) [in Russian].Google Scholar
  58. 58.
    V. A. Makrygina, Z. I. Petrova, G. Sandimirova, and Yu. A. Pakhol’chenko, “New Age Data on Deposits Flanking the Chuya and Cis-Baikal Uplifts,” Geol. Geofiz. 46(7), 714–722 (2005).Google Scholar
  59. 59.
    M. W. Martin, D. V. Grazhdankin, S. A Bowring, et al., “Age of Neoproterozoic Bilatarian Body and Trace Fossils, White Sea, Russia: Implication for Metazoan Evolution,“ Science 288, 841–845 (2000).CrossRefGoogle Scholar
  60. 60.
    A. V. Maslov, “Riphean and Vendian Sedimentary Sequences of the Timanides and Uralides, the Eastern Periphery of the East Europen Craton,” in The Neoproterozoic Timanide Orogen of Eastern Baltica (Geological Society, London, 2004), pp. 19–35.Google Scholar
  61. 61.
    V. A. Melezhik, I. M. Gorokhov, A. B. Kuznetsov, and A. E. Fallick, “Chemostratigraphy of Neoproterozoic Carbonates: Implications for ‘Blind Dating’,” Terra Nova 13, 1–11 (2001).CrossRefGoogle Scholar
  62. 62.
    A. V. Mezentsev, A. Nesenenko, V. I. Sukhorukov, and V. A. Yan-zhin-shin, “New Data on Structure and Correlation of the Yudoma Group in the Kyllakh Uplift,” Geol. Geofiz., No. 3, 19–28 (1978).Google Scholar
  63. 63.
    V. V. Missarzhevskii, Oldest Skeletal Fossils and Stratigraphy of the Precambrian-Cambrian Boundary Deposits (Nauka, Moscow, 1989) [in Russian].Google Scholar
  64. 64.
    M. Moczydlowska, “Acritarch Biostratigraphy of the Lower Cambrian and Precambrian-Cambrian Boundary in Southeastern Poland,” Fossils and Strata, No. 29, 1–127 (1991).Google Scholar
  65. 65.
    K. E. Nagovitsin, M. Sh. Faizullin, and M. S. Yakshin, “New Forms of Acanthomorphic Acritarchs from the Baikalian of the Patom Highland,” Addendum to Geol. Geofiz. 45(6–7), 7–19 (2004).Google Scholar
  66. 66.
    G. M. Narbonne, “Modular Construction of Early Ediacaran Complex Life Forms,” Science 305, 1141–1144 (2004).CrossRefGoogle Scholar
  67. 67.
    G. M. Narbonne and J. G. Gehling, “Life after Snowball: The Oldest Complex Ediacaran Fossils,” Geology 31, 27–30 (2003).CrossRefGoogle Scholar
  68. 68.
    S. V. Nuzhnov, S. V. Potapov, and V. T. Rabotnov, “Peculiar Stratigraphic Position and Subdivision of Vendian (Yudomian) Deposits of the Uchur-Maya Region,” in Analogs of Vendian Complex in Siberia (Nauka, Moscow, 1975), pp. 152–161 [in Russian].Google Scholar
  69. 69.
    K. A. Plumb, “Precambrian Time Scale,” Episodes 14(2), 139–140 (1991).Google Scholar
  70. 70.
    K. A. Plumb and H. L. James, “Subdivisions of Precambrian Time: Recommendation and Suggestion by the Subcommission of Precambrian Stratigraphy,” Precambrian Res. 32, 65–92 (1986).CrossRefGoogle Scholar
  71. 71.
    B. G. Pokrovskii, V. A. Melezhik, and M. I. Buyakaite, “Carbon, Oxygen, Strontium, and Sulfur Isotopic Compositions in Late Precambrian Rocks of the Patom Complex, Central Siberia: Communication 1. Results, Isotope Stratigraphy, and Dating Problems,” Litol. Polezn. Iskop., No. 5, 1–26 (2006) [Lithol. Miner. Resour. 41 (5), 450–474 (2006)].Google Scholar
  72. 72.
    A. A. Postnikov, A. D. Nozhkin, K. E. Nagovitsin, et al., “New Age Data on Neoproterozoic Deposits of the Chingasan and Vorogov Groups of the Yenisei Ridge,“ in Geological Evolution of Lithosphere in the Central Asian Belt (Inst. Zemnoi Kory, Irkutsk, 2005), pp. 71–76 [in Russian].Google Scholar
  73. 73.
    W.V. Preiss, “The Adelaide Geosyncline of South Australia and Its Significance in Neoproterozoic Continental Reconstruction,” Precambrian Res. 100, 21–63 (2000).CrossRefGoogle Scholar
  74. 74.
    V. G. Pyatiletov, “Late Precambrian Microfossils of the Uchur-Maya Region,” in Late Precambrian and Early Paleozoic of Siberia, Riphean and Vendian (IGiG SO AN SSSR, Novosibirsk, 1988), pp. 47–104 [in Russian].Google Scholar
  75. 75.
    V. T. Rabotnov and L. I. Narozhnykh, “On Stratigraphy of Lower Cambrian Deposits in the Uchur-Maya Region,” Geol. Polezn. Iskop. YaASSR (Yakutsk), No. 7, 107–113 (1961).Google Scholar
  76. 76.
    L. N. Repina, Z. V. Borodaevskaya, and V. V. Ermak, “Reference Section of the Selende River (Southeastern margin of the Aldan Shield),” in Cambrian of Siberian and Middle Asia (Nauka, Moscow, 1988), pp. 3–31 [in Russian].Google Scholar
  77. 77.
    Resolutions of the All-Union Stratigraphic Conference on the Precambrian, Paleozoic and Quaternary of Middle Siberia, Interdepartmental Stratigraphic Committee (IGiG SO AN SSSR, Novosibirsk, 1983) [in Russian].Google Scholar
  78. 78.
    Yu. L. Ronkin, A. V. Maslov, G. A. Petrov, et al., “In situ U-Rb (SHRIMR) Dating of Zircons from Granosyenite of the Troitsk Massif (Kvarkusha-Kamennogorsk Meganticlinorium, Central Urals),” Dokl. Akad. Nauk 412(1), 87–92 (2007) [Dokl. Earth Sci. 412 (1), 11–16 (2007)].Google Scholar
  79. 79.
    A. Yu. Rozanov and B. S. Sokolov, (Eds.), Stage Subdivision of the Lower Cambrian, Stratigraphy (Nauka, Moscow, 1984) [in Russian].Google Scholar
  80. 80.
    A. Yu. Rozanov, V. V. Missarzhevskii, N. A. Volkova, et al., The Tommotian Stage and Problem of the Cambrian Lower Boundary (Nauka, Moscow, 1969) [in Russian].Google Scholar
  81. 81.
    A. Yu. Rozanov, M. A. Semikhatov, B. S. Sokolov, et al., “The Decision on the Precambrian-Cambrian Boundary Stratotype: A Breakthrough or Misleading Action?,” Stratigr. Geol. Korrelyatsiya 5(1), 21–31 (1997) [Stratigr. Geol. Correlation 5 (1), 19–28 (1997)].Google Scholar
  82. 82.
    E. Yu. Rytsk, Yu. V. Amelin, N. G. Rizvanova, et al., “Age of Rocks in the Baikal-Muya Foldbelt,” Stratigr. Geol. Korrelyatsiya 9(4), 3–15 (2001) (Stratigr. Geol. Correlation 9 (4), 315–326 (2001)].Google Scholar
  83. 83.
    E. Yu. Rytsk, A. F. Makeev, V. A. Glebovitskii, and A. M. Fedoseenko, “A Vendian (590 ± 5 Ma) Age for the Padora Group in the Baikal-Muya Foldbelt: Evidence from U-Pb Zircon Data,” Dokl. Akad. Nauk 397(4), 517–519 (2004) [Dokl. Earth Sci. 397A (6), 768–770 (2004)].Google Scholar
  84. 84.
    E. Yu. Rytsk, V. S. Shalaev, N. G. Rizvanova, et al., “The Olokit Zone of the Baikal Fold Region: New Isotope-Geochronological and Petrogeochemical Data,“ Geotektonika, No. 1, 29–41 (2002) [Geotectonics 36 (1), 24–35 (2002)].Google Scholar
  85. 85.
    V. E. Savitskii, “Relations between the Cambrian and Upper Precambrian in the Anabar Shield,” in Proceedings of Conference on Stratigraphy of Upper Precambrian Deposits in Siberia and the Far East, Novosibirsk (VSEGEI, St. Petersburg, 1962), pp. 53–54 [in Russian].Google Scholar
  86. 86.
    V. E. Savitskii, “Problem of the Cambrian Lower Boundary in the Siberian Platform and the Nemakit-Daldynian Horizon,” in Analogs of the Vendian Complex in Siberia (Nauka, Moscow, 1975), pp. 43–61 [in Russian].Google Scholar
  87. 87.
    M. A. Semikhatov, “Specified Assessments of Isotopic Ages for Lower Boundaries of the Upper Riphean, Vendian, Upper Vendian and Cambrian,” in Addenda to Stratigraphic Code of Russia (VSEGEI, St. Petersburg, 2000), pp. 95–107 [in Russian].Google Scholar
  88. 88.
    M. A. Semikhatov and S. N. Serebryakov, The Riphean Hypostratotype of Siberia (Nauka, Moscow, 1983) [in Russian].Google Scholar
  89. 89.
    M. A. Semikhatov, A. B. Kuznetsov, V. N. Podkovyrov, et al., “The Yudoma Group of Stratotype Area: C-isotope Chemostratigraphic Correlations and Yudomian-Vendian Relation,” Stratigr. Geol. Korrelyatsiya 12(5), 3–28 (2004) [Stratigr. Geol. Correlation 12 (5), 435–469 (2004)].Google Scholar
  90. 90.
    M. A. Semikhatov, V. A. Komar, and S. N. Serebryakov, The Yudoma Group of Stratotype Area (Nauka, Moscow, 1970) [in Russian].Google Scholar
  91. 91.
    E. V. Sklyarov, (Ed.), Precambrian Evolution of the Siberian Craton Southern Part (SO RAN, Novosibirsk, 2006) [in Russian].Google Scholar
  92. 92.
    B. S. Sokolov, “The Vendian Complex and Problem of Boundary between the Precambrian and Paleozoic Group,” in Geology of the Precambrian (Nauka, Moscow, 1964), pp. 135–150 [in Russian].Google Scholar
  93. 93.
    B. S. Sokolov, Vendian of the Russian Platform: Its Boundaries, Subdivisions, and Stratigraphy (Nauka, Moscow, 1974) [in Russian].Google Scholar
  94. 94.
    B. S. Sokolov, “On Paleontological Remains from the Pre-Usol’e Deposits of the Irkutsk Amphitheater,” in Analogs of the Vendian Complex in Siberia (Nauka, Novosibirsk, 1975), pp. 112–118 [in Russian].Google Scholar
  95. 95.
    B. S. Sokolov, “The Vendian System: Historical-Geological and Paleontological Substantiation,” in The Vendian System. Vol. 2: Stratigraphy and Geological Processes (Nauka, Moscow, 1985), pp. 199–214 [in Russian].Google Scholar
  96. 96.
    B. S. Sokolov, Substantiation History of the Vendian (Nauka, Moscow, 1998) [in Russian].Google Scholar
  97. 97.
    B. S. Sokolov and M. A. Fedonkin, “The Vendian as the Terminal System of Precambrian,” Episodes 7(1), 12–19 (1984).Google Scholar
  98. 98.
    Yu. K. Sovetov and D. A. Komlev, “Tillites at the Base of the Oselok Group, Foothills of the Sayan Mountains, and the Vendian Lower Boundary in the Southwestern Siberian Platform,” Stratigr. Geol. Korrelyatsiya 13(4), 3–34 (2005) [Stratigr. Geol. Correlation 13 (4), 337–366 (2005)].Google Scholar
  99. 99.
    A. M. Stanevich, A. M. Mazukbazov, A. A. Postnikov, et al., “Late Proterozoic Sedimentary and Volcanogenic-Sedimentary Complexes in Southern Part of the Siberian Craton,” in Precambrian Evolution of the Siberian Craton Southern Part (SO RAN, Novosibirsk, 2006), pp. 221–259 [in Russian].Google Scholar
  100. 100.
    A. M. Stanevich, A. M. Mazukbazov, A. A. Postnikov, et al., “Northern Segment of the Paleo-Asian Ocean in the Neoproterozoic: History of Sedimentogenesis and Geodynamic Interpretation,” Geol. Geofiz. 48(1), 60–79 (2007).Google Scholar
  101. 101.
    A. M. Stanevich, V. K. Nemirov, and E. M. Chatta, Proterozoic Microfossils Sayan-Baikal Foldbelt: habitat Environment, Nature and Classification (Geo, Novosibirsk, 2006) [in Russian].Google Scholar
  102. 102.
    Stratigraphic Code of Russia, 3rd Edition (VSEGEI, St. Petersburg, 2006), p. 95 [in Russian].Google Scholar
  103. 103.
    H. Strauss, G. Vidal, M. Moczydlowska, and J. Paczesna, “Carbon Isotope Geochemistry and Palaeontology of Neoproterozoic to Cambrian Siliciclastic Succession in the East European Platform, Poland,” Geol. Mag. 134(1), 1–16 (1997).CrossRefGoogle Scholar
  104. 104.
    V. I. Sukhorukov, “The Yudoma Group and Pestrotsvet Formation of the Ulakhan-Bam Ridge,” in Late Precambrian and Early Cambrian of Siberia. Problems of Subdivision and Correlation (IGiG SO AN SSSR, Novosibirsk, 1984), pp. 79–101 [in Russian].Google Scholar
  105. 105.
    A. K. Val’kov, Biostratigraphy of the Lower Cambrian on the East of the Siberian Platform: Yudoma-Olenek Region (Nauka, Moscow, 1987) [in Russian].Google Scholar
  106. 106.
    V. A. Velikanov, L. V. Korneichuk, and V. V. Kir’yanov, The Vendian of Podolia (Inst. Geol. Nauk, Kiev, 1990) [in Russian].Google Scholar
  107. 107.
    S. A. Vodanyuk, Remains of Soft-Bodied Metazoa from the Khatyspyt Formation of the Olenek Uplift (IGiG, Novosibirsk, 1989) [in Russian].Google Scholar
  108. 108.
    N. G. Vorob’eva, V. N. Sergeev, and M. A. Semikhatov, “Unique Lower Vendian Kel’tma Microbiota, Timan Ridge: New Evidence for the Paleontological Essence and Global Significance of the Vendian System,” Dokl. Akad. Nauk 410(3), 366–371 (2006) [Dokl. 410 (7), 1038–1043 (2006)].Google Scholar
  109. 109.
    M. P. Walter, J. J. Veevers, C. R. Calver, et al., “Neoproterozoic Interval by Isotopes of Strontium, Carbon, and Sulfur in Seawater, and Some Interpretative Models,“ Precambrian Res. 100, 371–433 (2000).CrossRefGoogle Scholar
  110. 110.
    G. E. Williams, “The Paradox of Proterozoic Glaciomarine Deposition, Open Seas and Strong Seasonality near the Palaeo-Equator: Global Implications,“ (Elsevier, Amsterdam, 2004), pp. 448–459.Google Scholar
  111. 111.
    M. S. Yakshin and S. A. Vodanyuk, “The Khorbusuonka Group at the Eponymous River (Olenek Uplift),” in Late Precambrian and Early Paleozoic of Siberia: Stratigraphy and Paleontology (IGiG, Novosibirsk, 1986), pp. 21–32 [in Russian].Google Scholar
  112. 112.
    V. A. Yan-zhin-shin, Tectonics of the Sette-Daban Horst-Anticlinorium (SO AN SSSR, Yakutsk, 1983) [in Russian].Google Scholar
  113. 113.
    Stage Subdivision of the Lower Cambrian. Stratigraphy (Nauka, Moscow, 1984) [in Russian].Google Scholar
  114. 114.
    G. M. Young, “Earth’s Two Great Precambrian Glaciations: Aftermath of the ’snowball Earth’ Hypothesis,“ in The Precambrian Earth: Temps and Events (Elsevier, Amsterdam, 2004), pp. 440–448.Google Scholar
  115. 115.
    A. I. Zhamoida, “Problems Related to the International (Standard) Stratigraphic Scale and Its Perfection,“ Stratigr. Geol. Korrelyatsiya 12(4), 3–13 (2004) [Stratigr. Geol. Correlation 12 (4), 321–330 (2004)Google Scholar
  116. 116.
    Ch. Zhou, R. Tucker, Sh. Xiao et al., “New Constraints on the Age of Neoproterozoic Glaciation in South China,” Geology 32(5), 437–448 (2004).CrossRefGoogle Scholar
  117. 117.
    Z. A. Zhuravleva and V. A. Komar, “On Stratigraphy of the Riphean (Sinian) in the Anabar Massif,” Dokl. Akad. Nauk SSSR 144(1), 197–200 (1962).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. V. Khomentovsky
    • 1
  1. 1.Institute of Petroleum Geology and Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations