A problem of total glaciations on the Earth in the Late Precambrian

  • N. M. Chumakov


Ideas of global glaciations on the Earth repeatedly emerged in geology since the middle of the 19th century, but they all did not withstand the test of time. The hypothesis of snowball Earth that suggests long-lasted continuous glaciations over the entire land and oceans in the Late Riphean and Vendian became a popular topic of discussions worldwide. These glaciations must last continuously 15 million years or more owing to enormous stability of climate on the “White Earth,” and one can expect their cessation only when CO2 concentration in the atmosphere is getting by several orders of magnitude higher in the course of volcanic eruptions. However, many sections of the Late Precambrian glacial deposits evidence repeated alternations of glacial and interglacial events of variable rank and oscillations of glaciers. Consequently, liquid water existed on the Earth, hydrological cycle had not been interrupted, and development of phototrophic phytoplankton, the eukaryotic organisms inclusive, was always in progress. These facts and results of the climate mathematical simulation are inconsistent with the concept of long continuous glaciations over the globe and their consequences. Paleomagnetic data represent main starting point of the snowball Earth hypothesis, although they are to a great extent still of insufficient validity for the Precambrian. Equitable criticism of the hypothesis weak sides turns sometimes into denying all the glacial periods of the Late Proterozoic, when tillites are regarded in majority as deposits of subaqueous slumps and debris flows accumulated on walls of oceanic rifts prograding along splitting lines into the Rodinia continent. Doubtless marks of glaciations in the sedimentary succession are regarded therewith as heterochronous indications of local mountain glaciers on risen shoulders of prograding rifts. Widespread occurrence of the Late Precambrian discrete glacial horizons on the platforms means, however, that glaciations of that time have been associated not always with the rifts and consisted of separate glacial events. Glaciogenic horizons comparable in thickness and structure with those of the Phanerozoic Eonothem are also indicative of discrete glacial periods in the Precambrian. Being confined predominantly to the Late Precambrian succession of rifts, these horizons characterize a high burial potential of these structures, whereas outside them glacial horizons of lesser thickness could be easily subjected to erosion. The hypothesis of snowball Earth is inadequately consistent with well-known facts and needs in additional substantiation. There are also grounds to think that oceans have not been completely covered with ice at the time of Precambrian glaciations.

Key words

glacial successions oscillations interglacials biotas paleomagnetism 


  1. 1.
    M. M. Aksirov, On Evolution of the Earth (Izd. K-BAI, Nal’chik, 1989) [in Russian].Google Scholar
  2. 2.
    P. A. Allen, “Snowball Earth on Trial,” EOS 87(45), 495 (2006).CrossRefGoogle Scholar
  3. 3.
    Atlas of Lithologic-Paleogeographic, Structural, Palynspastic, and Geoecological Maps of Central Eurasia (YuGGEO, Almaty, 2002), maps I-XXXVI.Google Scholar
  4. 4.
    P. Barrett, “Use of Texture for Inferring Past Ice Extent and Sea Level Change from Coastal Glaciogenic Strata? with an Example from the Cape Roberts Project on the Ross Sea Margin of Antarctica,” in Proceedings of Intern. Conference: Glacial Sedimentary Processes and Products (Intern. Ass. Sedimentol., 2005), pp. 22–27.Google Scholar
  5. 5.
    M. L. Bazhenov and A. V. Mikolaichuk, “Paleomagnetism of Palaeogene Basalts from the Tien Shan, Kyrgyzstan: Rigid Eurasia and Dipole Geomagnetic Field,” Earth Planet. Sci. Lett. 195, 155–166 (2002).CrossRefGoogle Scholar
  6. 6.
    A. S. Brierley, G. Eernandes, M. A. Brandon, et al., “Antarctic Krill under Sea Ice: Elevated Abundance in a Narrow Band Just South of Ice Edge,” Science 295, 1890–1894 (2002).CrossRefGoogle Scholar
  7. 7.
    M. A. Chandler and L. E. Sohl, “Climate Forcing and the Initiation of Low-Latitude Icesheets During the Neoproterozoic Varanger Glacial Interval,” J. Geophys. Res. Atmospheres 105(D16), 20737–20756 (2000).CrossRefGoogle Scholar
  8. 8.
    N. M. Chumakov, “On Character of the Late Precambrian Glaciation in Spitsbergen,” Dokl. Akad. Nauk SSSR 180(6), 1446–1449 (1968).Google Scholar
  9. 9.
    N. M. Chumakov, “The Laplandian Glaciation,” in Studies on Stratigraphy (Nauka, Moscow, 1974), pp. 71–96 [in Russian].Google Scholar
  10. 10.
    N. M. Chumakov, Precambrian Tillites and Tilloids (Nauka, Moscow, 1978) [in Russian].Google Scholar
  11. 11.
    N. M. Chumakov, “Upper Proterozoic Glaciogenic Rocks and Their Stratigraphic Significance,” Precambrian Res. 15(3–4), 373–396 (1981).CrossRefGoogle Scholar
  12. 12.
    N. M. Chumakov, The Problems of Old Glaciations (Pre-Pleistocene Glaciogeology in the USSR) (Harwood Academic Publishers, Pennsylvania, 1992).Google Scholar
  13. 13.
    N. M. Chumakov, “Riphean Middle Siberian Glaciohorizon,” Stratigr. Geol. Korrelyatsiya 1(1), 21–34 (1993) [Stratigr. Geol. Correlation 1 (1), 17–28 (1993)].Google Scholar
  14. 14.
    N. M. Chumakov, “Reference Section of Vendian Glacial Deposits in the Southern Urals (Kurgashlya Formation of the Krivaya Luka Graben,” in The Urals: Basic Problems of Geodynamics and Stratigraphy (Nauka, Moscow, 1998), pp. 138–153 [in Russian].Google Scholar
  15. 15.
    N. M. Chumakov, “Global Climates of the Vendian,” Rus. Earth Sci. 5(6), 69–86 (2003).Google Scholar
  16. 16.
    N. M. Chumakov, “Trends in Global Climate Changes Inferred from Geological Data,” Stratigr. Geol. Korrelyatsiya 12(2), 7–32 (2004) [Stratigr. Geol. Correlation 12 (2), 117–138 (2004)].Google Scholar
  17. 17.
    N. M. Chumakov and D. P. Elton, “The Paradox of Late Proterozoic Glaciations at Low Latitudes,” Episodes 12, 115–120 (1989).Google Scholar
  18. 18.
    N. M. Chumakov and S. S. Krasil’nikov, “Lithologic Peculiarities of Riphean Tilloids in the Ura Uplift (Lena River Basin),” Litol. Polezn. Iskop., No. 3, 58–78 (1991).Google Scholar
  19. 19.
    M. A. Condon, “The Geology of the Carnarvon basin, W. Australia: Stratigraphy. Pt. 2. Permian,” Bull. Bur. Miner. Resour. Geol. Austral. 77, 191 (1967).Google Scholar
  20. 20.
    D. J. Condon, A. R. Prave, and D. I. Benn, “Neoproterozoic Glacial-Rainout Intervals: Observations and Implications,” Geology 30(1), 35–38 (2002).CrossRefGoogle Scholar
  21. 21.
    F. A. Corsetti, A. N. Olcott, and C. Bakermans, “The Biotic Response to Neoproterozoic Snowball Earth,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 232, 114–130 (2006).CrossRefGoogle Scholar
  22. 22.
    J. C. Crowell, “Pre-Mesozoic Ice Ages: Their Bearing on Understanding the Climate System,” Mem. Geol. Surv. Am. 192, 106 (1999).Google Scholar
  23. 23.
    I. W. D. Dalziel and N. J. Soper, “Neoproterozoic Extension on the Scottish Promontory of Laurentia: Paleogeographic and Tectonic Implications,” J. Geol. 109, 299–317 (2001).CrossRefGoogle Scholar
  24. 24.
    M. Deynoux, J. M. G. Miller, and E. W. Domack, et al., Earth’s Glacial Record (Cambridge Univ. Press, Cambridge, 1994).Google Scholar
  25. 25.
    B. Dzholdoshev, Stratigraphy of the Dzhetym Too Formation, the Dzhetym Iron Deposit of the Tien Shan, in Problems of Precambrian and Lower Paleozoic Stratigraphy (Akad. Nauk Kirg. SSR, Frunze, 1964), pp. 23–33 [in Russian].Google Scholar
  26. 26.
    D. A. D. Evans, “Stratigraphic, Geochronological, and Palaeomagnetic Constraints upon the Neoproterozoic Climatic Paradox,” Am. J. Sci. 300, 347–433 (2000).CrossRefGoogle Scholar
  27. 27.
    D. A. D. Evans, “Proterozoic Low Orbital Obliquity and Axial-Dipolar Geomagnetic Field from Evaporate Palaeolatitudes?,” Nature 444, 51–55 (2006).CrossRefGoogle Scholar
  28. 28.
    N. Eyles and N. Januszczak, “’Zipper-Rift’: a Tectonic Model for Neoproterozoic Glaciations During the Breakup of Rodinia After 750 Ma,” Earth Sci. Rev. 65, 1–73 (2004).CrossRefGoogle Scholar
  29. 29.
    I. J. Fairchild and M. J. Kennedy, “Neoproterozoic Glaciation in the Earth System,” J. Geol. Soc. London (2007, in press).Google Scholar
  30. 30.
    I. J. Fairchild, M. J. Hambrey, B. Spiro, and T. H. Jefferson, “Late Proterozoic Glacial Carbonates in Northeast Spitsbergen: New Insights Into the Carbonate-Tillite Association,” Geol. Mag 126, 469–490 (1989).Google Scholar
  31. 31.
    M. Fedonkin, “The Origin of the Metazoa in the Light of the Proterozoic Fossil Record,” Paleontological Res. 7(1), 9–41 (2003).CrossRefGoogle Scholar
  32. 32.
    P. Gautam and Y. Fujiwara, “Magnetic Polarity Stratigraphy of Sivalik Group Sediments of Karnali River Section in Western Nepal,” J. Geophys. Int. 142, 812–824 (2000).CrossRefGoogle Scholar
  33. 33.
    M. R. Gipp, “Architectural Styles of Glacially Influenced Marine Deposits on Tectonically Active and Passive Continental margins,” in Earth’s Glacial Record, Ed. by M. Deynoux, J. M. G. Miller, E. W. Domack, et al. (Cambridge Univ. Press, Cambridge, 1994), pp. 109–120.Google Scholar
  34. 34.
    Y. Godderis, Y. Donnadieu, A. Nedelec, et al., “The Sturtian ’snowball’ Glaciation: Fire and Ice,” Earth Planet. Sci. Lett. 211, 1–12 (2003).CrossRefGoogle Scholar
  35. 35.
    F. M. Gradstein, J. G. Ogg, A. G. Smith, et al., “A New Geologic Time Scale, with Special Reference To Precambrian and Neogene,” Episodes 27(2), 83–100 (2004).Google Scholar
  36. 36.
    M. J. Hambrey, W. B. Harland, N. M. Chumakov, et al., Earth’s Pre-Pleistocene Glacial Record (Cambridge Univ. Press, Cambridge, 1981).Google Scholar
  37. 37.
    W. B. Harland, “Critical Evidence for a Great Infra-Cambrian Glaciation,” Geol. Rundsch. 54, 45–61 (1965).CrossRefGoogle Scholar
  38. 38.
    P. F. Hoffman and D. P. Schrag, “The Snowball Earth Hypothesis: Testing the Limits of Global Change,” Terra Nova 14, 129–155 (2002).CrossRefGoogle Scholar
  39. 39.
    P. F. Hofmann, A. J. Kaufman, G. P. Halverson, and D. P. Schrag, “A Neoproterozoic Snowball Earth,” Science 281, 1342–1346 (1998).CrossRefGoogle Scholar
  40. 40.
    W. T. Hyde, T. J. Crowley, S. K. Baum, and W. R. Peltier, “Neoproterozoic ’snowball Earth’ Stimulations with a Coupled Climate/Ice-Sheet Model,” Nature 405(6785), 425–429 (2000).CrossRefGoogle Scholar
  41. 41.
    T. N. Kheraskova, A. N. Didenko, V. A. Bush, et al., “The Vendian-Early Paleozoic History of Continental Margin of Eastern Paleogondwana, Paleoasian Ocean, and Central Asian Foldbelt,” Rus. Earth Sci. 5(3), 165–184 (2003).Google Scholar
  42. 42.
    V. N. Kholodov and L. I. Krivaya, “Curve of Salop-Dzh. Gilluli—Reality or Artefact?,” Litol. Polezn. Iskop., No. 2, 49–66 (1994).Google Scholar
  43. 43.
    B. Kilner, C. M. Niocaill, and M. Brasier, “Low-Latitude Glaciation in the Neoproterozoic of Oman,” Geology 33(5), 413–416 (2005).CrossRefGoogle Scholar
  44. 44.
    J. Kirsechvink, “A Late Proterozoic Low-Latitude Global Glaciation: the Snowball Earth,” in The Proterozoic Biosphere. A Multidisciplinary Study (Cambridge Univ. Press, Cambridge, 1992), pp. 51–52.Google Scholar
  45. 45.
    A. H. Knoll, M. R. Walter, G. M. Narbonne, and N. Christie-Blick, “A New Period for the Geologic Time Scale,” Science 305, 621–622 (2004).CrossRefGoogle Scholar
  46. 46.
    B. Lanoi, E. Caidos, and S. Anderson, “Microbes in Subglacial Environments: Significant Biogeochemical Agents?,” Geophys. Res. Abstracts 5, 04719 (2003).Google Scholar
  47. 47.
    J. Leater, P. A. Allen, M. D. Brasier, and A. Cozzi, “Neoproterozoic Snowball Earth under Scrutiny: Evidence from the Fig Glaciation of Oman,” J. Geol. 30(10), 891–894 (2002).CrossRefGoogle Scholar
  48. 48.
    B. Levrard and J. Laskar, “Is High Obliquity a Still Plausible Explanation for the Neoproterozoic Low-Latitude Glaciation?,” Geophys. Res. Abstracts 5, 05924 (2003).Google Scholar
  49. 49.
    M-j. Li, T-g. Wang, and Ch-j. Wang, “’snowball Earth’ Hypothesis and the Palaeoevironment for Life Evolution during Late Neoproterozoic,” Acta Sedimentol. Sinica 24(1), 107–111 (2006).Google Scholar
  50. 50.
    Z. X. Li, D. A. D. Evans, and S. A. Zhang, “90° Spin on Rodinia: Possible Causal Links between the Neoproterozoic Supercontinent, Superplume, True Polar Wander and Low-Latitude Glaciation,” Earth Planet. Sci. Lett. 220, 409–421 (2004).CrossRefGoogle Scholar
  51. 51.
    M. P. I. Llanos, J. A. Tait, V. Popov, and A. Abalmassova, “Palaeomagnetic Data from Ediacaran (Vendian) Sediments of the Arkhangelsk Region, NW Russia: An Alternative Apparent Polar Wander Path of Baltica for the Late Proterozoic-Early Palaeozoic,” Earth Planet. Sci. Lett. 240(3–4), 732–747 (2005).CrossRefGoogle Scholar
  52. 52.
    M. Macouin, J. Besse, M. Ader, et al., “Combined Paleomagnetic and Isotopic Data from the Doushantuo Carbonates, South China: Implications for the ’snowball Earth’ Hypothesis,” Earth Planet. Sci. Lett. 224(3–4), 387–398 (2004).CrossRefGoogle Scholar
  53. 53.
    R. Malcuit and R. R. Winters, “The Late Proterozoic Glaciation: Possible Product of the Evolution of the Earth-Moon System,” in 26th International Geological Congress, Abstract Vol. II (1980), p. 600.Google Scholar
  54. 54.
    J. C. Meert, “Testing the Neoproterozoic Glacial Models,” Gondwana Res. 11(4), 573–574 (2007).CrossRefGoogle Scholar
  55. 55.
    J. C. Meert and R. van der Voo, “The Neoproterozoic (1000–540 Ma) Glacial Intervals: No More Snowball Earth? Reply,” Earth Planet. Sci. Lett. 131, 123–125 (1995).CrossRefGoogle Scholar
  56. 56.
    A. C. M. Moncrieff and M. J. Hambrey, “Marginal-Marine Glacial Sedimentation in the Late Precambrian Succession of East Greenland,” in Glaciomarine Environments: Processes and Sedimentation, Ed. by J. A. Dowdeswell and J. D. Scourse, Spec. Publ. Geol. Soc. 53, 387–410 (1990).Google Scholar
  57. 57.
    NASA. NASA Study Suggests Giant Space Clouds Iced Earth, Press Release 05-66. 3 March 2005. 〈
  58. 58.
    R. J. Oglesby and J. G. Ogg, “The Effect of Large Fluctuations in Obliquity on Climates of the Late Proterozoic,” Palaeoclimates, No. 2, 293–316 (1998).Google Scholar
  59. 59.
    A. N. Olcott, A. L. Sessions, F. A. Corsetti, et al., “Biomarker Evidence for Photosynthesis During Neoproterozoic Glaciation,” Science 310(5747), 471–474 (2005).CrossRefGoogle Scholar
  60. 60.
    M. A. Pais, J. L. Le Mouel, K. Lambeck, and J. P. Poirier, “Late Precambrian Paradoxial Glaciation and Obliquity of the Earth—A Discussion of Dynamical Constraints,” Earth Planet. Sci. Lett. 174, 155–171 (1999).CrossRefGoogle Scholar
  61. 61.
    V. E. Pavlov, I. Galle, A. V. Shatsillo, and V. Yu. Vodovozov, “Paleomagnetism of the Lower Cambrian in the Lena River Valley — New Constraints for the Siberian Platform Curve of Apparent Polar Wandering and Anomalous Behavior of Geomagnetic Field in the Initial Phanerozoic,” Fiz. Zemli, No. 2, 26–41 (2004).Google Scholar
  62. 62.
    A. A. Pavlov, O. B. Toon, A. K. Pavlov, et al., “Astronomical Origin for Snowball Earth?”, Geophys. Res. Lett. 32 (2005).Google Scholar
  63. 63.
    S. A. Pisarevsky, Z. X. Li, K. Grey, and M. K. Steven, “A Palaeomagnetic Study of Empress 1A, a Stratigraphic Drillhole in the Officer Basin: Evidence for a Low-Latitude Position of Australia in the Neoproterozoic,” Precambrian Res. 110(1–4), 93–108 (2001).CrossRefGoogle Scholar
  64. 64.
    D. Pollard and J. F. Kasting, “Thin Equatorial Sea-Ice Solution for Snowball Earth with Dynamic Sea Glaciers,” J. Geophys. Res. 110 (2005).Google Scholar
  65. 65.
    C. J. Poulsen, “Absence of a Runaway Ice-Albedo Feedback in the Neoproterozoic,” Geology 31(6), 473–476 (2003).CrossRefGoogle Scholar
  66. 66.
    Ch. J. Poulsen, R. L. Jacob, R. T. Pierrehumbert, and T. T. Huynh, “Testing Paleogeographic Controls on a Neoproterozoic Snowball Earth,” Geophys. Res. Lett. 29(11), 1515 (2002).CrossRefGoogle Scholar
  67. 67.
    Ch. J. Poulsen, R. T. Pierrehumbert, and R. L. Jacob, “Impact of Oceanic Dynamics on the Simulation of the Neoproterozoic ’snowball Earth’,” Geophys. Res. Lett. 28(8), 1575–1578 (2001).CrossRefGoogle Scholar
  68. 68.
    C. McA. Powell, S. A. Pisarevsky, M. T. D. Winwate, “An Animated History of Rodinia,” Geol. Soc. Australia Abstracts 65, 85–87 (2001).Google Scholar
  69. 69.
    W. V. Preiss, (Compiler), “The Adelaide Geosyncline — Late Proterozoic Stratigraphy, Sedimentation, Palaeontology and Tectonics,” Bull. Geol. Surv. South Australia 53 (1987).Google Scholar
  70. 70.
    M. R. Rampino, “Tillites, Diamictites, and Ballistic Ejecta of Large Impacts,” J. Geol. 120, 439–456 (1994).Google Scholar
  71. 71.
    T. D. Raub and D. A. Evans, “A Neoproterozoic Nonuniformtarian Renaissance,” in 32nd International Geological Congress, Abstracts Vol. 2 (2004), pp. 1354.Google Scholar
  72. 72.
    T. D. Raub and D. A. D. Evans, “Prolonged Deglaciation of Marinoan Snowball Earth from an Intergrative Australian Perspective,” in Snowball Earth (ETN-Zurich, Zurich, 2006), pp. 89–90.Google Scholar
  73. 73.
    T. D. Raub, D. A. D. Evans, and A. V. Smirnov, “Siliciclastic Prelude to Elatina-Nuccaleena Deglaciation: Lithostratigraphy and Rock Magnetism of the Base of the Ediacaran System,” Spec. Publ. Geol. Soc. London 286, 53–75 (2007).CrossRefGoogle Scholar
  74. 74.
    R. Rieu, P. A. Allen, M. Plotze, and T. Pettke, “Compositional and Mineralogical Variations in a Neoproterozoic Glacially Influenced Succession, Mirbat Area, South Oman: Implications for Paleoweathering Conditions,” Precambrian Res. 154(3–4), 248–265 (2007).CrossRefGoogle Scholar
  75. 75.
    L. I. Salop, “Precambrian Tillites and Vendian Glaciations,” Byull. Mosk. O—va Ispyt. Prir., Otd. Geol. 48(8), 74–80 (1973).Google Scholar
  76. 76.
    L. I. Salop, Geological Evolution of the Earth in the Precambrian (Nedra, Leningrad, 1982) [in Russian].Google Scholar
  77. 77.
    L. J. Schermerhorn, “Late Precambrian Mixtites: Glacial and/or Nonglacial?,” Am. J. Sci. 274, 673–835 (1974).Google Scholar
  78. 78.
    D. P. Schrag, R. A. Berner, P. F. Hoffman, et al., “On the Initiation of a Snowball Earth. Geochemistry. Geophysics. Geosystems,” G3. An Electronic Earth Sci. 3, 1–21 (2002).Google Scholar
  79. 79.
    C. R. Scotese, Paleomap Project 2000http://www.scotese
  80. 80.
    M. A. Semikhatov, “General Subdivision of the Precambrian: Comparison of the Latest Scales,” Stratigr. Geol. Korrelyatsiya 1(1), 6–20 (1993) [Stratigr. Geol. Correlation 1 (1), 4–18 (1993)].Google Scholar
  81. 81.
    M. A. Semikhatov, “Revised Isotopic dates for Lower Boundaries of the Upper Riphean, Vendian, Upper Vendian, and Cambrian: Addendum 4,” in Addenda to Stratigraphic Code of Russia (VSEGEI, St. Petersburg, 2000), pp. 95–107 [in Russian].Google Scholar
  82. 82.
    A. V. Shatsillo, Candidate’s Dissertation in Geology and Mineralogy (IFZ Ross. Akad. Nauk, Moscow, 2006).Google Scholar
  83. 83.
    A. V. Shatsillo, S. A. Pisarevskii, and B. B. Kochnev, “Results of Paleomagnetic Study of the Neoproterozoic Section ‘Elokhin Mys’ (Southwestern Siberian Platform),” in Paleomagnetism and Magnetism of the Rocks (GEOS, Moscow, 2006), pp. 162–165 [in Russian].Google Scholar
  84. 84.
    R. P. Sheldon, “Ice-Ring Origin of the Earth’s Atmosphere and Hydrosphere and Late Proterozoic-Cambrian Phosphogenesis,” Spec. Publ. Geol. Surv. India 17, 17–21 (1984).Google Scholar
  85. 85.
    G. A. Shields, “Snowball Earth Is Dead! Long Live Snowball Earth,” Episodes 29(4), 287–288 (2006).Google Scholar
  86. 86.
    G. A. Shields, M. Deynoux, H. Strauss, et al., “Barite-Bearing Cap Dolostones of the Taoudeni Basin, Northwest Africa: Sedimentary and Isotopic Evidence for Methane Seepage After a Neoproterozoic Glaciation,” Precambrian Res. 153, 209–235 (2007).CrossRefGoogle Scholar
  87. 87.
    A. G. Smith, “Paleomagnetically and Tectonically Based Global Maps for Vendian to Mid-Ordovician Time,” in The Ecology of the Cambrian Radiation, Ed. by A. Yu. Zuravlev and R. N. Y. Riding (Columbia Univ. Press, New York, 2001), pp. 11–46.Google Scholar
  88. 88.
    A. G. Smith and K. T. Pickering, “Oceanic Gateways as a Critical Factor to Initiate Icehouse Earth,” J. Geol. Soc. London 160, 337–340 (2003).Google Scholar
  89. 89.
    B. S. Sokolov, Studies on the Vendian Recognition (KMK Ltd, Moscow, 1998) [in Russian].Google Scholar
  90. 90.
    Yu. K. Sovetov and D. A. Komlev, “Tillites at the Base of the Oselok Group, Foothills of the Sayan Mountains, and the Vendian Lower Boundary in the Southwestern Siberian Platform,” Stratigr. Geol. Korrelyatsiya 13(4), 3–34 (2005) [Stratigr. Geol. Correlation 13 (4), 337–366 (2005)].Google Scholar
  91. 91.
    D. N. Thomas and G. S. Dieckmann, “Antarctic Sea Ice—a Habitat for Extremophiles,” Science 295, 641–644 (2002).CrossRefGoogle Scholar
  92. 92.
    R. I. F. Trindade, M. S. D’Agrella-Filho, M. Babinski, et al., “Paleomagnetism and Geochronology of Bebedouro Cap Carbonate: Evidence for Continental-Scale Cambrian Remagnetization in the San-Francisco Craton, Brazil,” Precambrian Res. 128, 83–103 (2004).CrossRefGoogle Scholar
  93. 93.
    R. I. F. Trindade, M. S. D’Agrella-Filho, F. T. Figueiredo, et al., “Paleomagnetism of Neoproterozoic Cap Carbonates of the Sao-Francisco and Amazonian Cratons, Brazil,” Geophys. Res. Abstracts 5, 13387 (2003a).Google Scholar
  94. 94.
    R. I. F. Trindade, E. Font, M. S. D’Agrella, et al., “Low-Latitude and Multiple Geomagnetic Reversals in the Neoproterozoic Puga Cap Carbonate, Amazon Craton,” Terra Nova 15(6), 441–446 (2003b).CrossRefGoogle Scholar
  95. 95.
    R. Trompette, “Late Precambrian Tillites of the Volta Basin and the Dahomeyides Orogenic Belt (Benin, Ghana, Niger, Togo and Upper Volta),” in Earth’s Pre-Pleistocene Glacial Record, Ed. by M. J. Hambrey, W. B. Harland, and N. M. Chumakov (Cambridge Univ. Press, Cambridge, 1981), pp. 135–139.Google Scholar
  96. 96.
    W. F. Vincent, D. R. Mueller, and S. Bonilla, “Ecosystems on Ice: the Microbial Ecology of Markham Ice Shelf in High Arctic,” Cryobiology 48, 103–112 (2004).CrossRefGoogle Scholar
  97. 97.
    J. N. J. Visser, “Controls on Early Permian Shelf Deglaciation in the Karoo Basin of South Africa,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 125, 129–139 (1996).CrossRefGoogle Scholar
  98. 98.
    H. J. Walderhaug, T. H. Torsvik, and E. Halvorsen, “The Egersund Dykes (SW Norway): a Robust Early Ediacaran (Vendian) Palaeomagnetic Pole from Baltica,” J. Geophys. Intern. 169(3), 935 (2007).CrossRefGoogle Scholar
  99. 99.
    G. E. Williams, “Late Precambrian Glacial Climate and the Earth’s Obliquity,” Geol. Mag. 112, 441–444 (1975).CrossRefGoogle Scholar
  100. 100.
    G. E. Williams, “Precambrian Permafrost Horizons as Indicators of Palaeoclimate,” Precambrian Res. 32, 233–242 (1986).CrossRefGoogle Scholar
  101. 101.
    G. M. Yeo, “The Late Proterozoic Rapitan Glaciation in the Northern Cordillera,” Pap. Geol. Surv. Can., No. 81–10, 25–46 (1981).Google Scholar
  102. 102.
    G. M. Young, “Stratigraphic and Tectonic Settings of Proterozoic Glaciogenic Rocks and Banded Iron-Formations: Relevance to the Snowball Earth Debate,” J. African Earth Sci. 35, 451–466 (2002).CrossRefGoogle Scholar
  103. 103.
    S. Zhang, Y. Chen, B. Xu, et al., “Late Neoproterozoic Paleomagnetic Results from the Sugetbrak Formation of the Aksu Area, Tarim Basin (NW China) and Their Implication to Paleogeographic Reconstructions and the Snowball Earth Hypothesis,” Precambrian Res. 154(3–4), 143–158 (2007).CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • N. M. Chumakov
    • 1
  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations