Advertisement

Petrology

, Volume 27, Issue 4, pp 329–369 | Cite as

Early Cambrian Syenite and Monzonite Magmatism in the Southeast of the East European Platform: Petrogenesis and Tectonic Setting

  • A. A. NosovaEmail author
  • A. A. Voznyak
  • S. V. Bogdanova
  • K. A. Savko
  • N. M. Lebedeva
  • A. V. Travin
  • D. S. Yudin
  • L. Page
  • A. N. Larionov
  • A. V. Postnikov
Article
  • 9 Downloads

Abstract—The paper reports new geochronological, petrological, and isotope-geochemical data on the syenites and alkali syenites of the Artyushki massif, and the monzonites of the Gusikha massif. These massifs are located along the southwestern and northeastern margins of the Pachelma aulacogen, in the southeastern part of the East European Platform (EEP). They have Early Cambrian ages of 524 ± 3 (Artyushki) and 514 ± 2 Ma (Gusikha) obtained by the U-Pb zircon method and similar ages of amphibole and K-feldspar by the 40Ar/39Ar method. This time period has previously been regarded as amagmatic in the EEP evolution. The Artyushki massif is made up of Amp–Cpx syenite porphyries and Grt–Cpx alkali syenite porphyries and their fenitized varieties. As compared to the Amp–Cpx varieties the Grt–Cpx rocks are more peralkaline (A/NK > 0.9) and have higher LREE and HFSE, and fractionated HREE patterns. The metasomatized (fenitized) varieties are more potassic and bear geochemical evidence of fluid reworking (high Y/Ho ratios, significant Zn variations, and etc.). Bulk samples have weakly radiogenic Sr isotopic compositions: (87Sr/86Sr)520 are within 0.703066–0.703615. The values of εNd(520) vary from –0.69 to +1.64. The Grt–Cpx syenite porphyries have the positive εNd(520), while the Amp–Cpx and fenitized syenite porphyries feature negative εNd. The Gusikha massif consists of biotite–amphibole and biotite monzonites. Similar to the Artyushki syenites in SiO2 contents, the Gusikha monzonites have higher Mg# (0.22–0.54 and 0.34–0.71 for the Artyushki and Gusikha massifs, respectively). They are also characterized by a negative Nb–Ta anomaly (Nb/Nb* = 0.5), high Ва/Sr ratio, and highly radiogenic (87Sr/86Sr)520 = 0.705204 and 0.705320. Their Nd-isotopic compositions correspond to εNd(520) = –6.7 and ‒7.0. Two melts contributed to the formation of the Artyushki massif. One was a strongly contaminated melt (Amp–Cpx syenite porphyries, the other was weakly contaminated (Grt–Cpx syenite porphyries). The main contribution was phonolitic melt derived from the melting of a moderately metasomatized (carbonate- and amphibole-bearing) shallow lithospheric mantle. The earliest and deepest melt portions were carbonate–silicate in composition. The geochemical, as well as the Sr and Nd isotopic compositions of the Gusikha monzonites indicate a predominant crustal contribution and pervasive reworking of the lithospheric mantle beneath southeastern Volgo–Uralia of the EEP in the Mesoproterozoic. Both massifs feature the geochemistry of within-plate and supra-subduction derivatives, which suggests a postorogenic tectonic setting of the magmatism. The presence of the Early Cambrian postorogenic magmatism within the East European Platform/Baltica is direct evidence for the involvement of Baltica in the collisional and/or accretionary events during the terminal Neoproterozoic–the beginning of the Paleozoic. This suggests reworking of the lithospheric mantle of Baltica during its collision with Timanian and East Avalonian/Cadomian terranes, including Scythia.

Keywords:

syenite monzonite Early Cambrian collision lithospheric mantle East European Platform Baltica continent Scythia 

Notes

ACKNOWLEDGMENTS

We highly appreciate help of L. P. Popova (Gubkin Russian State University of Oil and Gas) in searching core samples. We are grateful to Yu. O. Larionova, E. A. Minervina, and A. I. Yakushev (IGEM RAS), V. K. Karandashev (IPTM RAS), E. V. Gusevа (MSU) for help in analytical studies. Comments by A. V. Samsonov were useful and significantly improved the manuscript.

FUNDING

This work was carried out in the framework of the State Task of the Institue of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences (no. 0136-2018-0030), Project of Basic Research of the Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences (project no. 0330-2016-0003), as well as Ministry of Education and Science of the Russian Federation (project no. 5.1688.2017/PCh).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Andersen, T., Elburg, M., and Erambert, M., The miaskitic-to-agpaitic transition in peralkaline nepheline syenite (white foyaite) from the Pilanesberg Complex, South Africa, Chem. Geol., 2017, vol. 455, pp. 166–181.CrossRefGoogle Scholar
  2. 2.
    Anderson, J.L. and Smith, D.R., The effects of temperature and fO2 on the Al-in-hornblende barometer, Am. Mineral., 1995, vol. 80, pp. 549–559.CrossRefGoogle Scholar
  3. 3.
    Babayants, P.S. and Blokh, Yu., Karta lokal’noi namagnichennosti porod fundamenta Vostochno-Evropeiskoi platformy masshtaba 1: 2500000 (Map of Local Magnetization of the Basement Rocks of the East European Platform on a Scale 1: 2500000) Moscow: Aerogeofizika, 2001.Google Scholar
  4. 4.
    Baksi, A.K., Archibald, D.A., and Farm, E., Intercalibration of 40Ar/39Ar dating standards, Chem. Geol., 1996, vol. 129, pp. 307–324.CrossRefGoogle Scholar
  5. 5.
    Beckholmen, M. and Glodny, J., Timanian blueschist-facies metamorphism in the Kvarkush metamorphic basement, Northern Urals, Russia, Geol. Soc., 2004, vol. 30, pp. 125–134.CrossRefGoogle Scholar
  6. 6.
    Bibikova, E.V., Bogdanova, S.V., Postnikov, A.V., et al., Sarmatia–Volgo-Uralia junction zone: isotopic–geochronologic characteristic of supracrustal rocks and granitoids, Stratigraphy. Geol. Correlation, 2009, vol. 17, no. 6, pp. 561–573.CrossRefGoogle Scholar
  7. 7.
    Bogdanova, C.V. et al., Ob”yasnitel’naya zapiska k geologicheskoi karte Rossii, list N-38 (Explanatory Notes to the Geological Map of Russia. Sheet N-38). 2018 (in press).Google Scholar
  8. 8.
    Bogdanova, S.V. and Gorbatschev, R., The East European craton, E. Scott, 2016, pp. 1–18.Google Scholar
  9. 9.
    Bush, V.A., The deep structure of the Scythian plate basement, Geotectonics, 2014, vol. 6, pp. 413–426.CrossRefGoogle Scholar
  10. 10.
    Carvalho, B.B., Janasi, V.D.A., and Henrique-Рinto, R., Geochemical and Sr‑Nd-Pb isotope constraints on the petrogenesis of the K‑rich Pedra Branca syenite: implications for the Neoproterozoic post-collisional magmatism in SE Brazil, Lithos, 2014, vol. 205, pp. 39–59.CrossRefGoogle Scholar
  11. 11.
    Cawood, P.A., Strachan, R.A., Pisarevsky, S.A., et al., Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles, Earth Planet. Sci. Lett., 2016, vol. 449, pp. 118–126.CrossRefGoogle Scholar
  12. 12.
    Chernyshov, N.M., Ponomarenko, A.N., and Bartnitskii, E.N., New age data on the nickel-bearing differentiated plutons of the Voronezh crystalline massif, Dokl. Akad. Nauk USSR, Ser. B, 1990, no. 6, pp. 11–19.Google Scholar
  13. 13.
    Conceição, R.V. and Green, D.H., Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite, Lithos, 2004, vol. 72, pp. 209–229.CrossRefGoogle Scholar
  14. 14.
    Condamine, P. and Médard, E., Experimental melting of phlogopite-bearing mantle at 1 GPa: implications for potassic magmatism, Earth Planet. Sci. Lett., 2014, vol. 397, pp. 80–92.CrossRefGoogle Scholar
  15. 15.
    Cox, K.G., Bell, J.D., and Pankhurst, R.J., The Interpretation of Igneous Rocks, London: George Allen and Unwin Press, 1979.CrossRefGoogle Scholar
  16. 16.
    Dalrymple, G.B. and Lanphere, M.A., 40Ar/39Ar technique of K-Ar dating: a comparison with the conventional technique, Earth Planet. Sci. Lett., 1971, vol. 12, pp. 300–308.CrossRefGoogle Scholar
  17. 17.
    Dasgupta, R. and Hirschmann, M., Effect of variable carbonate concentration on the solidus of mantle peridotite effect of variable carbonate concentration on the solidus of mantle peridotite, Am. Mineral., 2007, vol. 92, pp. 370–379.CrossRefGoogle Scholar
  18. 18.
    Dubyna, A.V., Krivdik, S.G., and Sharygin, V.V., Geochemistry of alkali and nepheline syenites of the Ukrainian Shield: ICP-MS data, Geochem. Int., 2014, vol. 52, no. 10, pp. 842–856.  https://doi.org/10.7868/S0016752514080020 CrossRefGoogle Scholar
  19. 19.
    Eby, G.N., Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications, Geology, 1992, vol. 20, pp. 641–644.CrossRefGoogle Scholar
  20. 20.
    Elkins, L.T. and Grove, T.L., Ternary feldspar experiments and thermodynamic models, Am. Mineral., 1990, vol. 75, pp. 544–559.Google Scholar
  21. 21.
    Falloon, T.J. and Green, D., The solidus of carbonated, fertile peridotite, Earth Planet. Sci. Lett., 1989, vol. 94, pp. 364–370.CrossRefGoogle Scholar
  22. 22.
    Foland, K.A., Landoll, J.D., Henderson, C.M.B., et al., Formation of cogenetic quartz and nepheline syenites, Geochim. Cosmohim. Acta, 1993, vol. 57, pp. 697–704.CrossRefGoogle Scholar
  23. 23.
    Fowler, M.B., Elemental evidence for crustal contamination of mantle-derived Caledonian syenite by metasediment anatexis and magma mixing, Chem. Geol., 1988, vol. 69, pp. 1–16.CrossRefGoogle Scholar
  24. 24.
    Fumagalli, P., Zanchetta, S., and Poli, S., Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study, Contrib. Mineral. Petrol., 2009, vol. 158, pp. 723–737.CrossRefGoogle Scholar
  25. 25.
    Furman, T. and Graham, D., Erosion of lithospheric mantle beneath the East African rift system: geochemical evidence from the Kivu Volcanic Province, Lithos, 1999, vol. 48, pp. 237–262.CrossRefGoogle Scholar
  26. 26.
    Gahlan, H., Azer, M., Asimow, P., et al., Late Ediacaran post-collisional A-type syenites with shoshonitic affinities, northern Arabian–Nubian Shield: a possible mantle-derived A-type magma, Arab. J. Geosc., 2016, vol. 9, p. 603.CrossRefGoogle Scholar
  27. 27.
    Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1:1 000 000 (tret’e pokolenie). Seriya Vostochno-Evropeiskaya. List M-38. Volgograd. Ob”yasnitel’naya zapiska (State Geological Map of the Russian Federation. Scale 1 : 1 000 000 (3rd Edition). East European Series. Sheet M-38. Volgograd. Explanatory Note), St. Petersburg: Kartfabrika VSEGEI, 2009.Google Scholar
  28. 28.
    Grazhdankin, D.V., Chronostratigraphy of the Upper Vendian with Reference to the Sections of the Northeastern Margin of the East European Platform and Western Slope of the Central Urals), Extended Abstract of Doctoral (Geol.-Min.) Dissertation, Novosibirsk: INGG im. A.A. Trofimuka SO RAN, 2011.Google Scholar
  29. 29.
    Hamilton, D.L. and MacKenzie, W.S. Nepheline solid solution in the system NaAlSiO4–KAlSiO4–SiO2, J. Petrol., 1960, vol. 1, no. 9, pp. 56–72.CrossRefGoogle Scholar
  30. 30.
    Hansteen, T.H. and Burke, E.A.J., Melt-mineral-fluid interaction in peralkaline silicic intrusions in the Oslo Rift, southeast Norway. II: High-temperature fluid inclusions in the Eikeren-Skrim complex, Norges Geol. Undersøk., 1990, vol. 417, pp. 15–32.Google Scholar
  31. 31.
    Harris, C., Marsh, J.S., and Milner, S.C., Petrology of the alkaline core of the Messum Igneous Complex, Namibia: evidence for the progressively decreasing effect of crustal contamination, J. Petrol., 1999, vol. 40, no. 9, pp. 1377–1397.CrossRefGoogle Scholar
  32. 32.
    Henderson, C.M.B., Feldspathoid stabilities and phase inversions—a review, Feldspars and Feldspathoids, Structures, Properties and Occurrences, Ed. by W. L. Brown, University of Manchester, 1984, pp. 471–472.Google Scholar
  33. 33.
    Herzberg, C., Depth and degree of melting of komatiites, J. Geophys. Res., 1992, vol. 97, pp. 4521–4540.CrossRefGoogle Scholar
  34. 34.
    Irber, W., The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites, Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 489–508.CrossRefGoogle Scholar
  35. 35.
    Isozaki, Y., Põldvere, A., Bauert, H., et al., Provenance shift in Sambrian Mid-Baltica: detrital zircon chronology of Ediacaran–Cambrian sandstones in Estonia, Eston. J. Earth Sci., 2014, vol. 63, pp. 251–256.CrossRefGoogle Scholar
  36. 36.
    Ivanov, K.S., Koroteev, V.A., Erokhin, Yu.V., et al., Composition and age of the crystalline basement in the northwestern part of the West Siberian oil-and-gas megabasin, Dokl. Earth Sci., 2014, vol. 459, no. 2, pp. 1582–1586.CrossRefGoogle Scholar
  37. 37.
    Ivleva, A.S., Podkovyrov, V.N., Ershova, V.B., et al., Results of U–Pb LA–ICP–MS dating of detrital zircons from Ediacaran–Early Cambrian deposits of the eastern part of the Baltic Monoclise, Dokl. Earth Sci., 2016, vol. 468, no. 2, pp. 593–597.CrossRefGoogle Scholar
  38. 38.
    Ivleva, A.S., Podkovyrov, V.N., Ershova, V.B., et al., U–Pb LA–ICP–MS age of detrital zircons from the Lower Riphean and Upper Vendian deposits of the Luga–Ladoga Monocline, Dokl. Earth Sci., 2018, vol. 480, no. 2, pp. 695–699.CrossRefGoogle Scholar
  39. 39.
    Jung, S., Hoernes, S., and Hoffer, E., Petrogenesis of cogenetic nepheline and quartz syenites and granites (Northern Damara Orogen, Namibia) : enriched mantle versus crustal contamination petrogenesis of cogenetic nepheline and quartz syenites and granites (Northern Damara Orogen, Namibia): enriched mantle versus crustal contamination, J. Geol., 2005, vol. 113, pp. 651–672.CrossRefGoogle Scholar
  40. 40.
    Kamenetsky, V.S., Naumov, V.B., Davidson, P., et al., Immiscibility between silicate magmas and aqueous fluids: a melt inclusion pursuit into the magmatic-hydrothermal transition in the Omsukchan Granite (NE Russia), Chem. Geol., 2004, vol. 210, pp. 73–90.CrossRefGoogle Scholar
  41. 41.
    Kantserov, V.A., Bykov, I.N., and Bocharov, V.L., Formation Affiliation of dikes of alkaline rocks in the eastern Voronezh crystalline massif, Izv. Vyssh. Uchebn. Zaved., Geol. Razvedka, 1987, no. 8, pp. 18–25.Google Scholar
  42. 42.
    Karandashev, V.K., Khvostikov, V.A., Nosenko, S.Yu., et al., Application of highly enriched stable isotopes in mass analysis of samples of rocks, grounds, soils, and bottom sediments using inductively coupled plasma mass spectrometry, Zavodsk. Lab., Diagnostika Mater., 2016, vol. 82, no. 7, pp. 6–15.Google Scholar
  43. 43.
    Kargin, A.V., Sazonova, L.V., Nosova, A.A., et al., Sheared peridotite xenolith from the V. Grib kimberlite pipe, Arkhangelsk diamond province, Russia: texture, composition, and origin, Geosci. Front., 2017, vol. 8, pp. 653–669.CrossRefGoogle Scholar
  44. 44.
    Kheraskova, T.N., Volozh, Yu.A., Antipov, M.P., et al., Correlation of Late Precambrian and Paleozoic events in the East European Platform and the adjacent paleooceanic domains, Geotectonics, 2015, vol. 49, no. 1, pp. 27–52.CrossRefGoogle Scholar
  45. 45.
    Kheraskova, T.N., Bush, V.A., Didenko, A.N., et al., Breakup of Rodinia and early stages of evolution of the Paleoasian Ocean, Geotectonics, 2010, vol. 44, pp. 3–24.CrossRefGoogle Scholar
  46. 46.
    Kholodnov, V.V., Shardakova, G.Yu., Fershtater, G.B., et al., The Riphean magmatism preceding the opening of Uralian paleoocean: geochemistry, isotopes, age, and geodynamic implications, Geodynam. Tectonophys., 2018, vol. 9, pp. 365–389.CrossRefGoogle Scholar
  47. 47.
    Kogarko, L.N., Geochemistry of fractionation of coherent elements (Zr and Hf) during the profound differentiation of peralkaline magmatic systems: a case study of the Lovozero Complex, Geochem. Int., 2016, vol. 54, no. 1, pp. 1–6.  https://doi.org/10.7868/S0016752516010088 CrossRefGoogle Scholar
  48. 48.
    Kogarko, L.N., The role of global fluids in the genesis of mantle heterogeneities and alkaline magmatism, Russ. Geol. Geophys., 2005, vol. 46, no. 12, pp. 1213–1224.Google Scholar
  49. 49.
    Kuznetsov, N.B., Gorozhanin, V.M., Belousova, E.A., et al., First results of U–Pb dating of detrital zircons from the Ordovician clastic sequences of the Sol-Iletsk block, East European Platform, Dokl. Earth Sci., 2017, vol. 473, no. 2, pp. 381–385.Google Scholar
  50. 50.
    Kuznetsov, N.B., Orlov, S.Yu., Miller, E.L., et al., First results of U/Pb dating of detrital zircons from Early Paleozoic and Devonian sandstones of the Baltic-Ladoga region (South Ladoga Area), Dokl. Earth Sci., 2011, vol. 438, no. 2, pp. 759–765.CrossRefGoogle Scholar
  51. 51.
    Kuznetsov, N.B. and Romanyuk, T.V., Refinement of timing of the Protouralide–Timanide collisional orogen: 540–510 Ma, Tektonika skladchatykh poyasov Evrazii: skhodstvo, razlichie, kharakternye cherty noveishego goroobrazovaniya, regional’nye obobshcheniya. Materialy XLVI tektonicheskogo soveshchaniya (Tectonics of Folded Belts of Eurasia: Similarity, Difference, Characteristics of the Youngest Orogeny, Regional Generalization. Proceedings of 46th Tectonic Conference), Moscow: 2014, pp. 219–224.Google Scholar
  52. 52.
    Kuznetsov, N.B., Natapov, L.M., Belousova, E.A., et al., Geochronological, geochemical and isotopic study of detrital zircon suites from late neoproterozoic clastic strata along the NE margin of the East European Craton: implications for plate tectonic models, Gondwana Res., 2010, vol. 17, pp. 583–601.CrossRefGoogle Scholar
  53. 53.
    Laporte, D., Lambart, S., Schiano, P., et al., Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites, Earth Planet. Sci. Lett., 2014, vol. 404, pp. 319–331.CrossRefGoogle Scholar
  54. 54.
    Larin, A.M., Granity rapakivi i assotsiiruyushchie porody (Rapakivi Granites and Associated Rocks), St. Petersburg: Nauka, 2011.Google Scholar
  55. 55.
    Larionov, A.N., Andreichev, V.A., Gee, D.G., et al., The Vendian alkaline igneous suite of Northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite of the Vendian alkaline igneous suite of Northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite, Geol. Soc., 2004, vol. 30, pp. 69–74.CrossRefGoogle Scholar
  56. 56.
    Leonov, Yu.G., Volozh, Yu.A., Antipov, M.P., et al., Konsolidirovannaya kora Kaspiiskogo regiona: opyt raionirovaniya (Consolidated Crust of the Caspian Region: Experience of Demarcation), Moscow: GEOS, 2010.Google Scholar
  57. 57.
    Levashova, N.M., Bazhenov, M.L., Meert, J.G., et al., Paleogeography of Baltica in the Ediacaran: paleomagnetic and geochronological data from the clastic Zigan Formation, South Urals, Precambrian Res., 2013, vol. 236, pp. 16–30.CrossRefGoogle Scholar
  58. 58.
    López de Luchi, M.G., Siegesmund, S., Wemmer, K., et al., Petrogenesis of the postcollisional Middle Devonian monzonitic to granitic magmatism of the Sierra de San Luis, Argentina, Lithos, 2017, vol. 288–289, pp. 191–213.CrossRefGoogle Scholar
  59. 59.
    Lu, Y.J., Kerrich, R., Mccuaig, T.C., et al., Geochemical, Sr-Nd-Pb, and zircon Hf-O isotopic compositions of Eocene–Oligocene shoshonitic and potassic adakite-like felsic intrusions in Western Yunnan, SW China: petrogenesis and tectonic implications, J. Petrol., 2013, vol. 54, pp. 1309–1348.CrossRefGoogle Scholar
  60. 60.
    Lubnina, N.V., Pisarevsky, S.A., Puchkov, V.N., et al., New paleomagnetic data from Late Neoproterozoic sedimentary successions in Southern Urals, Russia: implications for the Late Neoproterozoic paleogeography of the Iapetan realm, Int. J. Earth Sci., 2014, vol. 103, pp. 317–334.CrossRefGoogle Scholar
  61. 61.
    Ludwig, K., User`s manual for Isoplot/Ex. 3.22. a geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center. Sp. Publ., 2005.Google Scholar
  62. 62.
    Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geo-Mar. Lett., 1989, vol. 101, pp. 635–43.Google Scholar
  63. 63.
    Mann, U., Marks, M., and Markl, G., Influence of oxygen fugacity on mineral compositions in peralkaline melts: influence of oxygen fugacity on mineral compositions in peralkaline melts: the Katzenbuckel Volcano, Southwest Germany, Lithos, 2006, vol. 91, pp. 262–285.CrossRefGoogle Scholar
  64. 64.
    Marks, M. and Markl, G., Fractionation and assimilation processes in the alkaline augite syenite unit of the Ilimaussaq intrusion, South Greenland, as deduced from phase equilibria, J. Petrol., 2001, vol. 42, pp. 1947–1969.CrossRefGoogle Scholar
  65. 65.
    Marks, M., Halama, R., Wenzel, T., et al., Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral-melt trace-element partitioning, Chem. Geol., 2004, vol. 211, pp. 185–215.CrossRefGoogle Scholar
  66. 66.
    Marks, M.A.W. and Markl, G., A global review on agpaitic rocks, Earth Sci. Rev., 2017, vol. 173, pp. 229–258.CrossRefGoogle Scholar
  67. 67.
    Migdisov, A.A., Williams-Jones, A.E., van Hinsberg, V., et al., An experimental study of the solubility of baddeleyite (ZrO2) in fluoride-bearing solutions at elevated temperature, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 7426–7434.CrossRefGoogle Scholar
  68. 68.
    Motoki, A., Sichel, S.E., Vargas, T., et al., Geochemical evolution of the felsic alkaline rocks of tangua and Rio Bonito intrusive bodies, state of Rio de Janeiro, Brazil, São Paulo UNESP, Geociências, 2010, vol. 29, pp. 291–310.Google Scholar
  69. 69.
    Motoki, A., Sichel, S.E., Vargas, T., et al., Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil, Anais Acad. Brasil. Ciências, 2015, vol. 87, pp. 1959–1979.CrossRefGoogle Scholar
  70. 70.
    Nikishin, A.M., Ziegler, P.A., Stephenson, R.A., et al., Late Precambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution, Tectonophysics, 1996, vol. 268, pp. 23–63.CrossRefGoogle Scholar
  71. 71.
    Nosova, A.A., Kuzmenkova O.F., Veretennikov, N.V., et al., Neoproterozoic Volhynia–Brest magmatic province in the Western East European Craton: within-plate magmatism in an ancient suture zone, Petrology, 2008, vol. 16, no. 2, pp. 105–135.CrossRefGoogle Scholar
  72. 72.
    Nosova, A.A., Sazonova, L.V., Kargin, A.V., et al., Mesoproterozoic within-plate igneous province of the Western Urals: main petrogenetic rock types and their origin, Petrology, 2012, vol. 20, no. 4, pp. 356–390.CrossRefGoogle Scholar
  73. 73.
    Okay, A.I. and Nikishin, A.M., Tectonic evolution of the southern margin of Laurasia in the Black Sea region, Int. Geol. Rev., 2015, vol. 57, pp. 1051–1076.CrossRefGoogle Scholar
  74. 74.
    Olafsson, M. and Eggler, D.H., Phase relations of ampibole, ampibole–carbonate, and phlogopite–carbonate peridotite: petrologic constraints on the asthenosphere, Earth Planet. Sci. Lett., 1983, vol. 64, pp. 305–315.CrossRefGoogle Scholar
  75. 75.
    Orlov, S.Yu., Kuznetsov, N.B., Miller, E.L., et al., Age constraints for the Pre-Uralide–Timanide orogenic event inferred from the study of detrital zircons, Dokl. Earth Sci., 2011, vol. 440, no. 1, pp. 1216–1221.CrossRefGoogle Scholar
  76. 76.
    Pashkevich, I. K., Rusakov, O. M., Kutas, R. I., Grin’, D. N., Starostenko, V. I. and Janik, T., Lithospheric structure based on integrated analysis of geological-geophysical data along DOBREfraction'99/DOBRE-2 profile (East European Platform - East Black Sea Basin), Geophys. J. Int., 2018, vol. 40, no. 5, pp. 98–136.Google Scholar
  77. 77.
    Pearce, J.A., Sources and setting of granitic rocks, Episodes, 1996, vol. 19, pp. 120–125.Google Scholar
  78. 78.
    Peng, P., Zhai, M.I., Guo, J., et al., Petrogenesis of Triassic post-collisional syenite plutons in the Sino-Korean Craton: an example from North Korea, Geol. Mag., 2008, vol. 145, pp. 637–647.CrossRefGoogle Scholar
  79. 79.
    Petrov, G.A., Geology of the Pre-Paleozoic Complexes of the Middle Part of the Uralian Mobile Belt. Extended Abstract of Doctoral (Geol-Min.) Dissertation, St. Petersburg: St. Petersb. Univ., 2017.Google Scholar
  80. 80.
    Podkovyrov, V.N., Maslov, A.V., Kuznetsov, A.B., et al., Lithostratigraphy and geochemistry of Upper Vendian‒Lower Cambrian deposits in the northeastern Baltic monocline, Stratigraphy. Geol. Correlation, 2017, vol. 25, no. 1, pp. 1–20.CrossRefGoogle Scholar
  81. 81.
    Puchkov, V.N., Geology of the Urals and Ural region (actual questions of stratigraphy, tectonics, geodynamics, and metallogeny), Ural’sk. Geol. Zh., 2010.Google Scholar
  82. 82.
    Puchkov, V.N., Bogdanova, S.V., Ernst, R.E., et al., The ca. 1380 Ma Mashak igneous event of the Southern Urals, Lithos, 2013, vol. 174, pp. 109–124.CrossRefGoogle Scholar
  83. 83.
    Renne, P.R., Swisher, C.C., Deino, A.L., et al., Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating, Chem. Geol., 1998, vol. 145, pp. 117–152.CrossRefGoogle Scholar
  84. 84.
    Romanyuk, T.V., Kuznetsov, N.B., Belousova, E.A., et al., Geochemical and Lu/Hf isotopic (LA–ICP–MS) systematics of detrital zircons from the Upper Ordovician sandstones of the Bashkir Uplift (Southern Urals), Dokl. Earth Sci., 2017, vol. 472, no. 2, pp. 134–137.CrossRefGoogle Scholar
  85. 85.
    Ryabchikov, I.D. and Kogarko, L.N., Physicochemical parameters of crystallization differentiation and Fe–Ti ore-forming processes in the magmatic system of the Elet’ozero Massif (Northern Karelia), Geochem. Int., 2016, vol. 54, no. 3, pp. 215–236. https://doi.org/10.7868/S0016752516030043 CrossRefGoogle Scholar
  86. 86.
    Ryskin, M.I., Smilevets, N.P., and Bobrova, D.V., On complex interpretation of geophysical data in a single coordination space, Geol. Razvedka, 1997, vol. 4, pp. 90–94.Google Scholar
  87. 87.
    Saintot, A., Stephenson, R.A., Stovba, S., et al., The evolution of the southern margin of Eastern Europe (Eastern European and Scythian platforms) from the latest Precambrian–Early Palaeozoic to the Early Cretaceous, Geol. Soc., 2006, vol. 32, pp. 481–505.CrossRefGoogle Scholar
  88. 88.
    Savko, K.A., Samsonov, A.V., Bazikov, N.S. Metaterrigenous rocks of the Vorontsovka Group of the Voronezh crystalline massif: geochemistry, specifics of formation, and provenances, Vestn. Voronezhsk. Gos. Univ., Ser. Geol., 2011, pp. 70–94.Google Scholar
  89. 89.
    Schairer, J.F. and Bowen, N.L., Preliminary report on equilibrium relations between feldspathoids, alkali feldspars, and silica, Trans. Amer. Geophys. Union, 1935, vol. 16, pp. 325–328.CrossRefGoogle Scholar
  90. 90.
    Selezneva, N.N., Riphean–Middle Vendian Sediments of the Southeastern Slope of the Volga–Ural Anteclise. Extended Abstract of Candidate (Geol.-Min.) Dissertation, Moscow: GIN RAN, 2017.Google Scholar
  91. 91.
    Seredkin, M.V., Zotov, I.A., and Karchevskii, P.I., Geological and genetic model for the formation of the Kovdor Massif and the accompanying apatite–magnetite deposit, Petrology, 2004, vol. 12, pp. 519–539.Google Scholar
  92. 92.
    Shagalov, E.S., Kholodnov, V.V., Nosova, A.A., et al., On the problem of age of host rocks of the Sibirka rare-metal deposit: Sm-Nd and U-Pb (zircon) isotope data, Tr. IGG UrO RAN, 2014, vol. 161, pp. 362–366.Google Scholar
  93. 93.
    Shardakova, G.Yu., Geochemistry and isotopic ages of granitoids of the Bashkirian mega-anticlinorium: evidence for several pulses of tectono–magmatic activity at the junction zone between the Uralian Orogen and East European Platform, Geochem. Int., 2016, vol. 54, no. 7, pp. 594–608.CrossRefGoogle Scholar
  94. 94.
    Shardakova, G.Yu., Granitoids and basites of different stages of the geodynamic evolution of the western slope of the South Urals: geochemical and isotope differences, sources, and problems, Ural’skaya Mineral. Shkola, 2017, vol. 23, pp. 238–245.Google Scholar
  95. 95.
    Shardakova, G.Yu., Savel’ev, V.P., Kuznetsov, N.S., New Vendian–Cambrian ages of granitoids and metamagmatic rocks of the western slope of the Urals: new evidence for the Cadomian Orogeny, XI Petrograficheskoe soveshchanie (11th Petrographic Conference), Yekaterinburg, 2010, pp. 330–331.Google Scholar
  96. 96.
    Shumlyanskyy, L., Nosova, A., Billström, K., et al., The U-Pb zircon and baddeleyite ages of the Neoproterozoic Volyn large igneous province: implication for the age of the magmatism and the nature of a crustal contaminant of the Neoproterozoic Volyn large igneous province: implication for the age of the magmatism and the nature of a crustal contaminant, GFF, 2016, vol. 138, pp. 17–30.CrossRefGoogle Scholar
  97. 97.
    Skryabin, V.Yu., Savko, K.A., Skryabin, M.V., et al., Cambrian magmatic activation of the East European Platform, Dokl. Earth Sci., 2015, vol. 463, no. 5, pp. 822–827.CrossRefGoogle Scholar
  98. 98.
    Sliaupa, S., Fokin, P., Lazauskiene, J., et al., The Vendian–Early Palaeozoic sedimentary basins of the East European Craton, Geol. Soc., 2006, vol. 32, pp. 449–462.CrossRefGoogle Scholar
  99. 99.
    Somin, M.L., Pre-Jurassic basement of the Greater Caucasus: brief overview, Turkish J. Earth Sci., 2011, vol. 20, pp. 545–610.Google Scholar
  100. 100.
    Stacey, J.S. and Kramers, J.D., Approximation of terrestrial lead isotope evolution by a two stage model, Earth Planet. Sci. Lett., 1975, vol. 26, pp. 207–221.CrossRefGoogle Scholar
  101. 101.
    Starostenko, V., Janik, T., Yegorova, T., Farfuliak, L., et al., Seismic model of the crust and upper mantle in the Scythian Platform: the Dobre-5 profile across the north western Black Sea and the Crimean Peninsula, Geophys. J. Inter, 2015, vol. 201, pp. 5–8.CrossRefGoogle Scholar
  102. 102.
    Steiger, R.H. and Jager, E., Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1977, vol. 36, pp. 359–362.CrossRefGoogle Scholar
  103. 103.
    Sun, S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. London. Spec. Publ., 1989, vol. 42, pp. 313–345.CrossRefGoogle Scholar
  104. 104.
    Thiéblemont, D. and Tégyey, M., Une discrimination géochimique des roches différenciés témoin de la diversité d’origine et de situation tectonique des magmas calco-alcalins, Acad. Sci, 1994, vol. 319, pp. 87–94.Google Scholar
  105. 105.
    Thirlwall, M.F., Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis, Chem. Geol., 1991, vol. 94, pp. 85–104.CrossRefGoogle Scholar
  106. 106.
    Timofeev, A., Migdisov, A.A., and Williams-Jones, A.E., An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature, Geochim. Cosmochim. Acta, 2015, vol. 158, pp. 103–111.CrossRefGoogle Scholar
  107. 107.
    Travin, A.V., Yudin, D.S., Vladimirov, A.G., et al., Thermochronology of the Chernorud granulite zone, Ol’khon Region, Western Baikal Area, Geochem. Int., 2009, vol. 47, no. 11, pp. 1107–1124.CrossRefGoogle Scholar
  108. 108.
    Tumiati, S., Fumagalli, P., and Tiraboschi, C., An experimental study on C–O–H-bearing peridotite up to 3.2 GPa and implications for crust–mantle recycling, J. Petrol., 2013, vol. 54, pp. 453–479.CrossRefGoogle Scholar
  109. 109.
    Valizer, P.M., Krasnobaev, A.A., Rusin, A.I. UHPM eclogite of the Maksyutov Complex (Southern Urals), Dokl. Earth Sci., 2015, vol. 461, no. 1, pp. 291–296.CrossRefGoogle Scholar
  110. 110.
    Valverde-Vaquero, P., Dörr, W., Belka, Z., et al., U-Pb single-grain dating of detrital zircon in the Cambrian of Central Poland: implications for Gondwana versus Baltica provenance studies, Earth Planet. Sci. Lett., 2000, vol. 184, pp. 225–240.CrossRefGoogle Scholar
  111. 111.
    Van Staal C.R., Dewey J.F., Mac Niocaill, C., et al., The Cambrian–Silurian tectonic evolution of the northern Appalachians and British Caledonides: history of a complex, west and southwest Pacific-type segment of Iapetus, Geol. Soc., 1998, vol. 143, pp. 197–242.CrossRefGoogle Scholar
  112. 112.
    Vladykin, N.V., Sotnikova, I.A., Kotov, A.B., et al., Structure, age, and ore potential of the Burpala rare-metal alkaline massif, Northern Baikal Region, Geol. Ore Deposits, 2014, vol. 56, no. 5, pp. 239–256.  https://doi.org/10.7868/S0016777014040066 CrossRefGoogle Scholar
  113. 113.
    Vuorinen, J.H., The Alno Alkaline and Carbonatitic Complex, East Central Sweden - a Petrogenetic Study. Dr. Sci. Thesis, Stockholm, 2005.Google Scholar
  114. 114.
    Walczak, A. and Belka, Z., Fingerprinting Gondwana versus Baltica provenance: Nd and Sr isotopes in Lower Paleozoic clastic rocks of the Malopolska and Łysogóry terranes, Southern Poland, Gondwana Res., 2017, vol. 45, pp. 138–151.CrossRefGoogle Scholar
  115. 115.
    Wallace, M.E. and Green, H.D., An experimental determination of primary carbonatite magma composition, Lett. Nature, 1988, vol. 335, pp. 343–346.CrossRefGoogle Scholar
  116. 116.
    Wang, Y., Prelević, D., Buhre, S., and Foley, S.F., Constraints on the sources of post-collisional K-rich magmatism: the roles of continental clastic sediments and terrigenous blueschists, Chem. Geol., 2017, vol. 455, pp. 192–207.CrossRefGoogle Scholar
  117. 117.
    Watson, E.B., Wark, D.A., and Thomas, J.B., Crystallization thermometers for zircon and rutile, Contrib. Mineral. Petrol., 2006, vol. 151, p. 413.CrossRefGoogle Scholar
  118. 118.
    Wen, S. and Nekvasil, H., Solvalc: an interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry, Comp. Geosci., 1994, vol. 20, pp. 1025–1040.CrossRefGoogle Scholar
  119. 119.
    Wu, F., Arzamastsev, A.A., Mitchell, R.H., et al., Emplacement age and Sr-Nd isotopic compositions of the Afrikanda alkaline ultramafic complex, Kola Peninsula, Russia, Chem. Geol., 2013, vol. 353, pp. 210–229.CrossRefGoogle Scholar
  120. 120.
    Yegorova, T.P., Stephenson, R.A., Kostyuchenko, S.L., et al., Structure of the lithosphere below the southern margin of the East European Craton (Ukraine and Russia) from gravity and seismic data, Tectonophysics, 2004, vol. 381, pp. 81–100.CrossRefGoogle Scholar
  121. 121.
    Zartman, R.E. and Kogarko, L.N., Lead isotopic evidence for interaction between plume and lower crust during emplacement of peralkaline Lovozero rocks and related rare-metal deposits, East Fennoscandia, Kola Peninsula, Russia, Contrib. Mineral. Petrol., 2017, vol. 172.Google Scholar
  122. 122.
    Źelaźniewicz, A., Bula, Z., Fanning, M., et al., More evidence on Neoproterozoic terranes in southern Poland and southeastern Romania, Geol. Quart., 2009, vol. 53, pp. 93–123.Google Scholar
  123. 123.
    Zhang, X., Zhang, H., Jiang, N., et al., Early Devonian alkaline intrusive complex from the northern North China Craton: a petrological monitor of post-collisional tectonics, J. Geol. Soc., 2010, vol. 167, pp. 717–730.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Nosova
    • 1
    Email author
  • A. A. Voznyak
    • 1
    • 2
  • S. V. Bogdanova
    • 3
    • 4
  • K. A. Savko
    • 5
  • N. M. Lebedeva
    • 1
  • A. V. Travin
    • 6
    • 7
  • D. S. Yudin
    • 6
    • 7
  • L. Page
    • 3
  • A. N. Larionov
    • 8
  • A. V. Postnikov
    • 9
  1. 1.Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of SciencesMoscowRussia
  2. 2.Geological Faculty, Moscow State UniversityMoscowRussia
  3. 3.Department of Geology, Lund UniversityLundSweden
  4. 4.Institute of Geology and Petroleum Technologies, Kazan (Volga Region) Federal UniversityKazanRussia
  5. 5.Voronezh State UniversityVoronezhRussia
  6. 6.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  7. 7.Novosibirsk State UniversityNovosibirskRussia
  8. 8.Karpinskii All-Russia Research Institute of GeologySt. PetersburgRussia
  9. 9.Gubkin Russian State University of Oil and GasMoscowRussia

Personalised recommendations