, Volume 27, Issue 1, pp 95–107 | Cite as

Comparison of the Compositions and Microstructures of Terrestrial and Lunar Impact Glasses: Samples from the Zhamanshin Crater and Luna 16, 20, and 24 Missions

  • T. A. Gornostaeva
  • A. V. MokhovEmail author
  • P. M. Kartashov
  • O. A. Bogatikov


The paper presents pioneering data on the comparative study of impact glasses from the Zhamanshin crater and lunar regolith (delivered by the Luna 16, 20, and 24 probes). The data were acquired using analytical techniques of ultrahigh spatial resolution. Many of the melt and condensate impact glasses, both terrestrial and lunar, are similar in inner structure and composition, which were controlled primarily by the physics of the impacts and similar compositions of the targets.


impact glasses Zhamanshin crater Moon 



The authors thank Prof. P.V. Florensky (Gubkin State Oil and Gas University) and Dr. M.K. Sukhanov (Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences) for providing samples for this study. This study was conducted under government-financed project “Study of the Composition and Structure of Mineral Materials with Techniques of High Spatial Resolution”.


  1. 1.
    Adcock, C.T., Spilde, M.N., and Papike, J.J., Automated HASP glass search using the electron microprobe, 38th Lunar Planet. Sci., 1997, vol. 28, pp. 1151–1152.Google Scholar
  2. 2.
    Arndt, J.V. and Engelhardt, W., Formation of Apollo-17 orange and black glass beads, Proc. XVII Lunar Planet. Sci. Conf. Part 2. J. Geophys. Res.: Solid Earth, 1987, vol. 92, no. B4, pp. 372–376.CrossRefGoogle Scholar
  3. 3.
    Bibring, J.P., Duraud, J.P., Durrieu, L., et al., Ultrathin amorphous coatings on lunar dust grains, Science, 1972, vol. 175, pp. 753–755.CrossRefGoogle Scholar
  4. 4.
    Christoffersen, R., McKay, D.S., and Keller, L.P., Grain rims on ilmenite in the lunar regolith: comparison to vapor deposits on regolith silicates, 35th Lunar Planet. Sci. Conf. Proc., 1994, vol. 25, pp. 259–260.Google Scholar
  5. 5.
    Cliff, G. and Lorimer, G.W., Quantitative analysis of thin metal foils using emma-4, the ratio technique, Proc. 5th European Congress on Electron Microscopy, Institute of Physics, London, 1972, pp. 140–141.Google Scholar
  6. 6.
    Delano, J.W., Lindsley, D.H., and Rudowski, R., Glasses of impact origin from Apollo-11, -12, -15, and -16: evidence for fractional vaporization and mare/highland mixing, Proc. 12th Lunar Planet. Sci. Conf., 1981, pp. 339–370.Google Scholar
  7. 7.
    Dikov, Yu.P., Gerasimov, M.V., Yakovlev, O.I., and Wlotzka, F., The correlation of alkalis and aluminum during high-temperature volatilization of albite and nepheline, 34th Lunar Planet. Sci. Conf. Proc. Abstracts, 1993, pp. 403–404.Google Scholar
  8. 8.
    Dikov, Yu.P., Ivanov, A.V., Wlotzka, F., et al., High enrichment of carbon and volatile elements in the surface layers of Luna 16 soil sample 1635: result of comet or meteorite impact?, Earth Planet. Sci. Lett., 1998, vol. 155, no. 3, pp. 197–204.CrossRefGoogle Scholar
  9. 9.
    Dikov, Y.P., Huth, J., Wlotzka, F., and Ivanov, A.V., HASP glasses in Apollo-17 orange soil sample 74220, 31st Lunar Planet. Sci. Conf., 2000, vol. 31, pp. 1110–1111.Google Scholar
  10. 10.
    Dikov, Yu.P., Ivanov, A.V., Wlotzka, F., Galimov, E.M., and Wanke, G., The nature of volatiles in the lunar regolith, Solar Syst. Res., 2002, vol. 36, no. 1, pp. 1–11.CrossRefGoogle Scholar
  11. 11.
    Dikov, Yu.P., Gerasimov, M.V., Yakovlev, O.I., and Ivanov, A.V., Valence state of iron in a condensate from the Luna 16 regolith, Petrology, 2009, vol. 17, no. 5, pp.429–438.CrossRefGoogle Scholar
  12. 12.
    Dowty, E., Keil, K., and Prinz, M., Major-element vapor fractionation on the lunar surface: an unusual lithic fragment from the Luna 20 fines, Lunar Planet. Sci. Conf., 1973, vol. 21, no. 1, pp. 91–96.Google Scholar
  13. 13.
    Dran, J.C., Durrieu, L., Jouret, C., and Maurette, M., Habit and texture studies of lunar and meteoritic materials with a 1 MeV electron microscope, Earth Planet. Sci. Lett., 1970, vol. 9, no. 5, pp. 391–400.CrossRefGoogle Scholar
  14. 14.
    Engelhardt, W.V. and Stengelina, R., Normative composition and classification of lunar igneous rocks and glasses, II. Lunar glasses, Earth Planet. Sci. Lett., 1981, vol. 52, no. 1, pp. 55–66.CrossRefGoogle Scholar
  15. 15.
    Engelhardt, W.V., Luft, E., Arndt, J., et al., Origin of moldavites, Geochim. Cosmochim. Acta, 1987, vol. 51, no. 6, pp. 1425–1443.CrossRefGoogle Scholar
  16. 16.
    Florensky, P.V. and Dikov Yu.P., Genesis of tektites: reason of their composition and structure, Geokhimiya, 1981, vol. 6, pp. 809–819.Google Scholar
  17. 17.
    Florensky, K.P. and Nikolaeva, O.V., Volatile components and continental matter of planets, Geokhimiya, 1984, no. 9, pp. 1251–1267.Google Scholar
  18. 18.
    Fredriksson, K., Nelen, J., and Melson, W.G., Petrography and origin of lunar breccias and glasses, Geochim. Cosmochim. Acta. Suppl., 1970, vol. 1, p. 419.Google Scholar
  19. 19.
    Gornostaeva, T.A., Mokhov, A.V., and Gornostaev, A.N., Ultrasound extractor for sample preparation in transmission electron microscope, VII Vseross. konf. po rentgenospektral’nomu analizu (7th All-Russian Conference on X-Ray Analysis), Novosibirsk: 2011, p. 53.Google Scholar
  20. 20.
    Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., Bogatikov, O.A., The protective role of glass film over the surface of metallic particles of the lunar regolith, Dokl. Earth Sci., 2014, vol. 459, pp. 1457–1459.CrossRefGoogle Scholar
  21. 21.
    Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A., Condensate glasses from the Zhamanshin Crater. I. Irghizites, Petrology, 2016, vol. 24, no. 1, pp. 1–20.CrossRefGoogle Scholar
  22. 22.
    Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A., Condensate glasses from the Zhamanshin Crater. II. Zhamanshinites, Petrology, 2017, vol. 25, no. 1, pp. 1–22.CrossRefGoogle Scholar
  23. 23.
    Gornostaeva T.A., Mokhov A.V., Kartashov P.M., Bogatikov O.A. Impactor type and model of the origin of the Zhamanshin Astrobleme, Kazakhstan, Petrology, 2018, vol. 26, no. 1, pp. 82–95.CrossRefGoogle Scholar
  24. 24.
    Herzog, G.F., Delaney, J.S., Lindsay, F., et al., Magnesium and silicon isotopes in hasp glasses from apollo-16 lunar soil 61241, 43rd Lunar Planet. Sci. Conf., 2012, pp. 1579–1580.Google Scholar
  25. 25.
    Horz, F., Fechtig, H., Janicke, J., and Schneider, E., Morphology and chemistry of projectile residue in small experimental impact craters, 14th Lunar Planet. Sci. Conf. Proc., 1983, vol. 14, pp. B353–B363.Google Scholar
  26. 26.
    Ivanov, A.V., Role of vaporization in the formation of chemical composition of lunar glasses, Geokhimiya, 1975, no. 8, pp. 1150–1153.Google Scholar
  27. 27.
    Ivanov, A.V., Volatiles in Lunar Regolith Samples: A Survey, Solar System Res., 2014, vol. 48, no. 2, pp. 113–129.CrossRefGoogle Scholar
  28. 28.
    Ivanov, A.V. and Florensky, K.P., The role of vaporization processes in lunar rock formation, 6th Lunar Planet. Sci. Conf. Proc., 1975, vol. 6, pp. 1341–1350.Google Scholar
  29. 29.
    Izokh, E.P., Petrochemistry of rocks of targets, impactites, and tektites of the Zhamanshin astrobleme, Kosmicheskoe veshchestvo i Zemlya (Cosmic Matter and Earth), Novosibirsk: Nauka, Sib. Otd-nie, 1986, pp. 159–203.Google Scholar
  30. 30.
    Izokh, E.P. and Le Dyk, An., Tectites of Vietnam. Hypothesis of Cometary Transportation, Meteoritika, 1983, vol. 42, pp. 158–169.Google Scholar
  31. 31.
    Kartashov, P.M., Mokhov, A.V., Gornostaeva, T.A., et al., Mineral phases on the fracture of a glass particle and in the fines of a Luna 24 regolith sample, Petrology, 2010, vol. 18, no. 2, pp. 107–125.CrossRefGoogle Scholar
  32. 32.
    Keller, L.P. and McKay, D.S., The origin of amorphous rims on lunar plagioclase grains: solar wind damage or vapor condensates, 54th Annual Meet. Meteorit. Soc., 1991, vol. 766, p. 114.Google Scholar
  33. 33.
    Keller, L.P. and McKay, D.S., Impact glasses and vapor condensates in Apollo-11 soil, Lunar Planet. Sci. Conf. Abstracts, 1992a, vol. 23, pp. 673–674.Google Scholar
  34. 34.
    Keller, L.P. and McKay, D.S., Micrometer-sized glass spheres in Apollo-16 soil 61181: implications for impact volatilization and condensation, Lunar Planet. Sci. Conf., 1992b, vol. 22, pp. 137–141.Google Scholar
  35. 35.
    Keller, L.P. and McKay, D.S., The nature and origin of rims on lunar soil grains, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 11, pp. 2331–2341.CrossRefGoogle Scholar
  36. 36.
    Koeberl, C., Blue glass: a new impactite variety from Zhamanshin Crater, U.S.S.R, Geochim. Cosmochim. Acta, 1988, vol. 52, no. 3, pp. 779–784.CrossRefGoogle Scholar
  37. 37.
    Lushnipov, A.A., Negin, A.E., Pakhomov, A.V., and Smirnov B.M., Aerogel structures in gases, Usp. Fiz. Nauk, 1991, vol. 161, no. 2, pp. 113–123.CrossRefGoogle Scholar
  38. 38.
    Ma, M.-S., Schmitt, R.A., Warner, R.D., et al., Genesis of Apollo-15 olivine normative mare basalts: trace elements correlations, 9th Lunar Planet. Sci. Conf. Proc., 1978, vol. 9, pp. 523–533.Google Scholar
  39. 39.
    Magna, T., Deutsch, A., Mezger, K., et al., Lithium in tektites and impact glasses: implications for sources, histories and large impacts, Geochim. Cosmochim. Acta, 2011, vol. 75, no. 8, pp. 2137–2158.CrossRefGoogle Scholar
  40. 40.
    Margolis, S.V., Claeys, P., and Kyte, F.T., Microtektites, microkrystites, and spinels from a Late Pliocene asteroid impact in the Southern Ocean, Science, 1991, vol. 251, no. 5001, pp. 1594–1597.CrossRefGoogle Scholar
  41. 41.
    Markova, O.M., Yakovlev, O.I., Semenov, G.A., and Belov, A.N., Some general results of experiments on evaporation of natural melts in the Knudsen cell, Geokhimiya, 1986, no. 11, pp. 1559–1569.Google Scholar
  42. 42.
    Mokhov, A.V., Analytical electron microscopy in study of ultra-dispersed fraction of lunar soil, I Vseross. molodezh. konf. “Mineraly, stroenie, svoistva, metody issledovaniya” (1st All-Russian Youth Conference on Minerals, Structure, Properties, and Methods of Study), Il’meny: 2009, pp. 42–45.Google Scholar
  43. 43.
    Mokhov, A.V., Kartashov, P.M., Gornostaeva, T.A., Bogatikov, O.A., Native ytterbium of regolith AS Luna-24, Dokl. Earth Sci., 2011, vol. 441, pp. 1692–1694.CrossRefGoogle Scholar
  44. 44.
    Naney, M.T., Crowl, D.M., and Papike, J.J., The Apollo-16 drill core: statistical analysis of glass chemistry and the characterization of a high alumina-silica poor (HASP) glass, Lunar Planet. Sci. Conf. Proc., 1976, vol. 7, pp. 155–184.Google Scholar
  45. 45.
    Naughton, J.J., Hammond, D.A., Margolis, S.V., and Muenow, D.W., The nature and effect of the volatile cloud produced by volcanic and impact events on the Moon as derived from a terrestrial volcanic model, 3rd Lunar Planet. Sci. Conf. Proc., 1972, vol. 3, pp. 2015–2024.Google Scholar
  46. 46.
    Noble, S.K., Pieters, C.M., Taylor, L.A., et al., The optical properties of the finest fraction of lunar soil: implications for space weathering, Meteorit. Planet. Sci., 2001, vol. 36, no. 1, pp. 31–42.CrossRefGoogle Scholar
  47. 47.
    Norris, J.A., Keller, L.P., and McKay, D.S., Impact glasses from the ultrafine fraction of lunar soils, 24th Lunar Planet. Sci. Conf. Proc., 1993, vol. 24, pp. 1093–1094.Google Scholar
  48. 48.
    O’Keefe, J.A., Tektite glass in Apollo-12 sample, Science, 1970, vol. 168, pp. 1209–1210.CrossRefGoogle Scholar
  49. 49.
    O’Keefe, J.A., Tectites and their Origin, New York: Elsevier, 1976.Google Scholar
  50. 50.
    Otmakhov, V.I., Varlamova, N.V., Manankov, A.N., and Lapova, T.V., Physicochemical studies of tektites for cosmic monitoring, Izv. Tomskogo Politekhn. Univ., 2006, vol. 309, no. 5, pp. 40–44.Google Scholar
  51. 51.
    Papike, J.J., Spilde, M.N., Adcock, C.T., et al., Trace element fractionation by impact-induced volatilization-sims study of lunar HASP glasses, Lunar Planet. Sci. Conf. Proc., 1997, vol. 28, p. 1059.Google Scholar
  52. 52.
    Petaev, M.I. and Wood, J.A., The condensation with partial isolation (CWPI) model of condensation in the solar nebula, Meteorit. Planet. Sci., 1998, vol. 33, no. 5, pp. 1123–1137.CrossRefGoogle Scholar
  53. 53.
    Petaev, M.I., Jacobsen, S.B., and Huang, S., Testing models of moon origin: condensation of impact-vaporised bulk silicate earth material, 45th Lunar Planet. Sci. Conf. Proc., 2014, pp. 2316–2317.Google Scholar
  54. 54.
    Pratesi, G., Viti, C., Cipriani, C., and Mellini, M., Silicate-silicate liquid immiscibility and graphite ribbons in Libyan desert glass, Geochim. Cosmochim. Acta, 2002, vol. 66, no. 5, pp. 903–911.CrossRefGoogle Scholar
  55. 55.
    Reid, A.M., Warner, J., Ridley, W.I., and Brown, R.W., Major element composition of glasses in three Apollo-15 soils, Meteoritics, 1972, vol. 7, no. 3, pp. 395–415.CrossRefGoogle Scholar
  56. 56.
    Rietmeijer, F.J.M. and Karner, J.M., Metastable eutectics in the Al2O3–SiO2 system explored by vapor phase condensation, J. Chem. Phys., 1999, vol. 110, pp. 4554–4558.CrossRefGoogle Scholar
  57. 57.
    Rietmeijer, F.J.M., Nuth, J.A., Rochette, P., et al., Deep metastable eutectic condensation in Al–Fe–SiO–H2–O2 vapors: implications for natural Fe-aluminosilicates, Am. Mineral., 2006, vol. 91, pp. 1688–1698.CrossRefGoogle Scholar
  58. 58.
    Roedder, E. and Weiblen, P.W., Apollo-17 “orange soil” and meteorite impact on liquid lava, Nature, 1973, vol. 244, pp. 210–212.CrossRefGoogle Scholar
  59. 59.
    Skublov, G.T. and Tyugai, O.M., Petrochemical model of the formation of tektite-like glasses of the Zhamanshin Crater and their relation with lunar impact genesis, Zap. Ross. Mineral. O-va, 2004, no. 6, pp. 95-117.Google Scholar
  60. 60.
    Vaniman, D.T., Glass variants and multiple hasp trends in apollo 14 regolith breccias, Lunar Planet. Sci. Conf. Proc., 1990, vol. 20, pp. 209–217.Google Scholar
  61. 61.
    Walker, R. and Yuhas, D., Cosmic ray track production rates in lunar materials, Geochim. Cosmochim. Acta. Suppl., 1973, vol. 3, pp. 2379–2389.Google Scholar
  62. 62.
    Warren, P.H. and Kallemeyn, G.W., Que93069: a lunar meteorite rich in HASP glasses, 26th Lunar Planet. Sci. Conf. Proc., 1995, vol. 26, pp. 1465–1466.Google Scholar
  63. 63.
    Warren, P.H., Lunar rock-rain: diverse silicate impact-vapor condensates in an Apollo-14 regolith breccias, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 3562–3585.CrossRefGoogle Scholar
  64. 64.
    Wentworth, S.J. and McKay, D.S., Glasses in ancient and young Apollo-16 regolith breccias: populations and ultra mg glasses, 18th Lunar Planet. Sci. Conf. Proc., 1988, vol. 18, pp. 67–77.Google Scholar
  65. 65.
    Wentworth, S.J., Keller, L.P., McKay, D.S., and Morris, R.V., Space weathering on the Moon: patina on Apollo 17 samples 75075 and 76015, Meteorit. Planet. Sci., 1999, vol. 34, no. 4, pp. 593–603.CrossRefGoogle Scholar
  66. 66.
    Wood, J.A. and Hashimoto, A., Mineral equilibrium in fractionated nebular systems, Geochim. Cosmochim. Acta, 1993, vol. 57, no. 10, pp. 2377–2388.CrossRefGoogle Scholar
  67. 67.
    Yakovlev, O.I., Dikov, Yu.P., and Gerasimov, M.V., Differentiation caused by impact-induced vaporization during the Earth’s accretion, Geochem. Int., 2000, vol. 38, no. 10, pp. 937–954.Google Scholar
  68. 68.
    Yakovlev, O.I., Dikov, Yu.P., Gerasimov, M.V., et al., Experimental Investigation of Factors Controlling the Composition of Glasses from the Lunar Regolith, Geochem. Int., 2003, vol. 4, no. 5, pp. 417–430.Google Scholar
  69. 69.
    Yakovlev, O.I., Gerasimov, M.V., and Dikov, Yu.P., Experimental melting of obsidian by laser pulses with implications for the analysis of the composition of impact glasses, Geochem. Int., 2005, vol. 43, no. 3, pp. 211–221.Google Scholar
  70. 70.
    Yakovlev, O.I., Gerasimov, M.V., and Dikov, Yu.P., Temperatures of formation of HASP and GASP particles, 40th Lunar Planet. Sci. Conf. Proc., 2009, vol. 40, p. 1261.Google Scholar
  71. 71.
    Yakovlev, O.I., Gerasimov, M.V., Dikov, Yu.P., Compositions of lunar condensates and conditions of their formation on the surface, XVI Ross. soveshch. po eksperimental’noi mineralogii (16th All-Russian Conference on Experimental Mineralogy), 2010, pp. 291–293.Google Scholar
  72. 72.
    Yakovlev, O.I., Gerasimov, M.V., and Dikov, Yu.P., Conditions of condensate rim formation on the surface of lunar regolith particles, Geochem. Int., 2011, vol. 49, no. 10, pp. 953–966.CrossRefGoogle Scholar
  73. 73.
    Yakovlev, O.I., Dikov, Yu.P., Gerasimov, M.V., and Vlottska, F., Vaporization of aluminum from silicate melt, Geochem. Int., 1997, vol. 35, no. 12, pp. 1046–1059.Google Scholar
  74. 74.
    Yakovlev, O.I., Kosolapov, A.I., Kuznetsov, A.V., and Nusinov, M.D., Results of study of fractional evaporation of basalic melt in vacuum, Dokl. Akad. Nauk SSSR, 1972, vol. 206, no. 4, pp. 970–973.Google Scholar
  75. 75.
    Zel’dovich, B. and Raizer, Yu., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Impact Waves and High-Temperature Hydrodynamic Phenomena), Moscow: FIZMATLIT, 2008.Google Scholar
  76. 76.
    Zolensky, M.E. and Koeberl, C., Why are blue zhamanshinites blue? Liquid immiscibility in an impact melt, Geochim. Cosmochim. Acta, 1991, vol. 55, no. 5, pp. 1483–1486.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. A. Gornostaeva
    • 1
  • A. V. Mokhov
    • 1
    Email author
  • P. M. Kartashov
    • 1
  • O. A. Bogatikov
    • 1
  1. 1.Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of SciencesMoscowRussia

Personalised recommendations