, Volume 27, Issue 1, pp 59–78 | Cite as

Migration of Radiogenic Helium in the Crystal Structure of Sulfides and Prospects of Their Isotopic Dating

  • O. V. YakubovichEmail author
  • A. M. Gedz
  • I. V. Vikentyev
  • A. B. Kotov
  • B. M. Gorokhovskii


The migration of helium from the crystal lattices of sulfides (pyrite, pyrrhotite, chalcopyrite, bornite, and sphalerite) and sulfosalts (tennantite and tetrahedrite) was studied. It was shown that helium occurs in submicrometer inclusions of uranium- and thorium-bearing minerals. The curves of helium thermal desorption from the sulfide and sulfosalts were obtained by the step-heating method and analyzed on the basis of the single-jump migration model. The interpretation of these data led to the conclusion on the possibility of the U–Th–He dating of pyrite. It was shown that the migration parameters of helium in the other sulfides and sulfosalts are not suitable for their potential use as U–Th–He geochronometer. Based on a comparison of data on helium migration in various minerals, it was suggested that high helium retentivity in some sulfides and arsenides (pyrite and sperrylite) is related to the type of their crystal lattice, packing density, and specific electric resistivity.


pyrite sulfides radiogenic helium U–Th–He dating 



This study was financially supported by the Russian Foundation for Basic Research (project no. 16-05-01010) and State Assignment Project no. 0153-2015-0015 of the Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences.


  1. 1.
    Airiyants, E.V., Gold Mineralization in Carbonate Deposits of the Southeastern Part of the Eastern Sayan, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Novosibirsk: OIGGM SO RAN, 2006.Google Scholar
  2. 2.
    Altschuler, Z.S., Clarke, R.S., and Young, E.J., The geochemistry of uranium in apatite and phosphorite, US Geol. Surv. Prof. Pap., 1957, vol. 314-D, pp. 45–90.Google Scholar
  3. 3.
    Barnes, S.J. and Ripley, E.M., Highly siderophile and strongly chalcophile elements in magmatic ore deposits, Rev. Mineral. Geochem., 2016, vol. 81, no. 1, pp. 725–774.CrossRefGoogle Scholar
  4. 4.
    Bhargava, S.K., Garg, A., and Subasinghe, N.D., In situ high-temperature phase transformation studies on pyrite, Fuel, 2009, vol. 88, no. 6, pp. 988–993.CrossRefGoogle Scholar
  5. 5.
    Bowles, J.F.W., Howie, R.A., Vaughan, D.J., and Zussman, J., Rock-Forming Minerals. Vol. 5A. Non-silicates: Oxides, Hydroxides and Sulphides. Geol. Soc. London, 2011.Google Scholar
  6. 6.
    Burnard, P.G. and Polya, D.A., Importance of mantle derived fluids during granite associated hydrothermal circulation: He and Ar isotopes of ore minerals from Panasqueira, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 7, pp. 1607–1615.CrossRefGoogle Scholar
  7. 7.
    Buslaev, F.P., Yarosh, P.Ya., Ershov, V.G., and Semenova, N.N., Tarn’erskoe deposit, in Mednokolchedannye mestorozhdeniya Urala: Geologicheskoe stroenie (Copper Sulfide Deposits of the Urals: Geologic Structure), Sverdlovsk: UrO AN SSSR, 1988, pp. 171–182.Google Scholar
  8. 8.
    Butler, I.B. and Nesbitt, R.W., Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS), Earth Planet. Sci. Lett., 1999, vol. 167, no. 3, pp. 335–345.CrossRefGoogle Scholar
  9. 9.
    Cabri, L.J., New data on phase relations in the Cu–Fe–S system, Econ. Geol., 1973, vol. 68, no. 4, pp. 443–454.CrossRefGoogle Scholar
  10. 10.
    Chernyshev, I.V., Vikent’ev, I.V., Chugaev, A.V., et al., Sources of material for massive sulfide deposits in the Urals: evidence from the high-precision MC–ICP–MS isotope analysis of Pb in galena, Dokl. Earth Sci., 2008, vol. 418, no. 1, pp. 178–183.CrossRefGoogle Scholar
  11. 11.
    Christensen, J.N., Halliday, A.N., Leigh, K.E., et al., Direct dating of sulfides by Rb–Sr: a critical test using the Polaris Mississippi valley-type Zn–Pb deposit, Geochim. Cosmochim. Acta, 1995, vol. 59, no. 24, pp. 5191–5197.CrossRefGoogle Scholar
  12. 12.
    Dickin, A., Radiogenic Isotope Geology, Cambridge: Cambridge University Press, 2005.CrossRefGoogle Scholar
  13. 13.
    Dunai, T.J., Cosmogenic Nuclides: Principles, Concepts, and Applications in the Earth Surface Sciences, Cambridge: Cambridge University Press, 2010.CrossRefGoogle Scholar
  14. 14.
    Evans, J.H., An inter-bubble fracture mechanism of blister formation on helium-irradiated metals, J. Nucl. Mater., 1977, vol. 68, pp. 129–140.CrossRefGoogle Scholar
  15. 15.
    Farley, K.A. and Stockli, D.F., (U–Th)/He dating of phosphates: apatite, monazite, and xenotime, Rev. Mineral. Geochem., 2002, vol. 48, no. 1, pp. 559–577.CrossRefGoogle Scholar
  16. 16.
    Fechtig, H. and Kalbitzer, S., The Diffusion of Argon in Potassium-Bearing Solids. Potassium–Argon Dating, Berlin: Springer, 1966.Google Scholar
  17. 17.
    Fleischer, R.L., Price, P.B., and Walker, R.M., Nuclear Tracks in Solids: Principles and Applications, Berkeley: University of California Press, 1975.Google Scholar
  18. 18.
    Garmaev, B.L., Gold–Telluride and Gold–Bismuth Mineral Types of Mineralization in the Western Flank of the Bokson–Gargan Metallogenic Zone (East Sayan), Extended Abstract of Candidte’s (Geol.-Min.) Sci., Ulan-Ude: GIN SO RAN, 2011.Google Scholar
  19. 19.
    Garuti, G. and Zaccarini, F., Minerals of Au, Ag and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy, Can. Mineral., 2005, vol. 43, pp. 935–950.CrossRefGoogle Scholar
  20. 20.
    Gerling, E.K., Heat of helium diffusion as a criterion for applicability of mineral for age determination by the helium method, Dokl. Akad Nauk SSSR, 1939, vol. 24, no. 6, pp. 570–573.Google Scholar
  21. 21.
    Gerling, E.K., Sovremennoe sostoyanie argonovogo metoda opredeleniya absolyutnogo vozrasta i ego primenenie v geologii, (Modern State of Argon Dating and Its Application in Geology), Moscow–Leningrad: Izd-vo AN SSSR, 1961.Google Scholar
  22. 22.
    Grabezhev, A.I., Skarns of the Gumeshevsk skarn–porphyry copper deposit, Central Urals, Petrology, 2004, vol. 12, no. 2, pp. 176–190.Google Scholar
  23. 23.
    Grabezhev, A.I., Rhenium-bearing copper porphyry systems of the Urals: geological position, isotope-petrogeochemical, and age lateral zoning, Litosfera, 2012, no. 4, pp. 190–207.Google Scholar
  24. 24.
    Guenthner, W.R., Reiners, P.W., Ketcham, R.A., et al., Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U–Th)/He thermochronology, Am. J. Sci., 2013, vol. 313, no. 3, pp. 145–198.CrossRefGoogle Scholar
  25. 25.
    Gurtov, V.A. and Osaulenko, R.N., Fizika tverdogo tela dlya inzhenerov. Uchebnoe posobie (Physics of Solids for Engineer. A Textbook), Moscow: Tekhnosfera, 2012.Google Scholar
  26. 26.
    Harrison, T.M., Diffusion of 40Ar in hornblende, Contrib. Mineral. Petrol., 1982, vol. 78, no. 3, pp. 324–331.CrossRefGoogle Scholar
  27. 27.
    Hirt, W., Herr, W., and Hoffmeister, W., Age determinations by rhenium–osmium method. Radiometric dating and methods of low level counting, Int. Atom. Energy Agency, 1963, pp. 35–43.Google Scholar
  28. 28.
    Hurley, P.M., The Helium Age Method and the Distribution and Migration of Helium in Rocks. Nuclear Geology, New York: Wiley, 1954.Google Scholar
  29. 29.
    Ivanov, A.V., Vanin, V.A., Demonterova, E.I., et al., Application of the 'no fool’s clock' to dating the Mukodek gold field, Siberia, Russia, Ore Geol. Rev., 2015, vol. 69, pp. 352–359.CrossRefGoogle Scholar
  30. 30.
    Jean-Baptiste, P. and Fouquet, Y., Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13oN, Geochim. Cosmochim. Acta, 1996, vol. 60, no. 1, pp. 87–93.CrossRefGoogle Scholar
  31. 31.
    Knunyants I.L. and Zefirov N.S. Khimicheskaya entsiklopediya. T. 4. (Chemical Encyclopedia. Vol. 4) Moscow: Sovetskaya entsiklopediya, 1995.Google Scholar
  32. 32.
    Komarov, F.F., Defect and track formation in solids irradiated by superhigh-energy ions, Adv. Phys. Sci., 2003, vol. 46, pp. 1231–1252.Google Scholar
  33. 33.
    Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations, Geochim. Cosmochim. Acta, 1973, vol. 37, no. 3, pp. 485–494.CrossRefGoogle Scholar
  34. 34.
    Li, Q.L., Chen, F., Yang, J.H., et al., Single grain pyrite Rb–Sr dating of the Linglong gold deposit, Eastern China, Ore Geol. Rev., 2008, vol. 34, no. 3, pp. 263–270.CrossRefGoogle Scholar
  35. 35.
    Luders, V. and Niedermann, S., Helium isotope composition of fluid inclusions hosted in massive sulfides from modern submarine hydrothermal systems, Econ. Geol., 2010, vol. 105, pp. 443–449.CrossRefGoogle Scholar
  36. 36.
    Markey, R., Stein, H., and Morgan, J., Highly precise Re–Os dating for molybdenite using alkaline fusion and NTIMS, Talanta, 1998, vol. 45, no. 5, pp. 935–946.CrossRefGoogle Scholar
  37. 37.
    Marques, J.C., Overview on the Re–Os isotopic method and its application on ore deposits and organic-rich rocks, Geochim. Brasil., 2013, vol. 26, no. 1, p. 49.Google Scholar
  38. 38.
    McDougall, I. and Harrison, T.M., Geochronology and Thermochronology by the 40 Ar/ 39 Ar Method, Oxford: Oxford University Press, 1999.Google Scholar
  39. 39.
    Melekestseva, I.Y., Tret’yakov, G.A., Nimis, P., et al., Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87’N): evidence for phase separation and magmatic input, Mar. Geol., 2014, vol. 349, pp. 37–54.CrossRefGoogle Scholar
  40. 40.
    Miguta, A.K., Composition and mineral assemblages of uranium ores in the El’kon District, Aldan Shield (Russia), Geol. Ore Deposits, 1997, vol. 38, no. 4, pp. 275–293.Google Scholar
  41. 41.
    Mikheev, E.I., Kotler, P.D., Kulikova, A.V., et al., Geology, magmatism and metallogeny of the Gorny Altai, Field Trip Guidebook. The 8th International Siberian Early Career Geoscientist Conference, Novosibirsk, 2016.Google Scholar
  42. 42.
    Mineraly. Spravochnik. Tom 1. Samorodnye elementy. Intermetallicheskie soedineniya. Karbidy, nitridy, fosfidy. Arsenidy, antimonidy, vismutidy. Sul’fidy. Selenidy (Minerals. A Handbook. Volume 1. Native Elements. Intermetallic Compounds. Carbides, Nitrides, Phosphides. Arsenides, Antimonides, Bismuthides), Bonshtedt-Kupletskaya, E.M. and Chukhrov, F.V., Eds., Moscow: AN SSSR, 1960.Google Scholar
  43. 43.
    Mironov, A.G. and Zhmodik, S.M., Gold deposits of the Urik–Kitoi metallogenic zone (Eastern Sayan, Russia), Geol. Ore Deposits, 1999, vol. 41, no. 1, pp. 46–60.Google Scholar
  44. 44.
    Mironov, A.G., Zhmodik, S.M., Ochirov, Yu.Ch., et al., The Tainskoe gold deposit (Eastern Sayan, Russia)—a new example of the porphyry gold type, Geol. Ore Deposits, 2001, vol. 43, no. 5, pp. 353–370.Google Scholar
  45. 45.
    Mochalov, A.G., Yakubovich, O.V., and Zolotarev, A.A., Structural changes and preservation of radiogenic 4He in platinum minerals in deformation, Dokl. Akad. Nauk., 2018, vol. 480, pp. 1–5.Google Scholar
  46. 46.
    Moloshag, V.P., Radioactive mineralization of supergene ores of sulfide deposits of the Urals by the example of the Tan’er deposit, Ezhegodnik-2014, 2015, vol. 162, pp. 169–171.Google Scholar
  47. 47.
    Moloshag, V.P., Grabezhev, A.I., Vikent’ev, I.V., and Gulyaeva, T.Ya., Facies of ore formation of sulfide ores of the sulfide and copper–gold porphyry deposits of the Urals, Litosfera, 2004, no. 2, pp. 30–51.Google Scholar
  48. 48.
    Morelli, R.M., Creaser, R.A., Seltmann, R., et al., Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re–Os–He isotopes in arsenopyrite, Geology, 2007, vol. 35, pp. 795–798.CrossRefGoogle Scholar
  49. 49.
    Morgan, D.V. and Chadderton, L.T., Fission fragment tracks in semiconducting layer structures, Philos. Mag., 1968, vol. 17, pp. 1135–1142.CrossRefGoogle Scholar
  50. 50.
    Murzin, V.V., Varlamov, D.A., and Vikent’ev, I.V., Copper–cobalt mineralization of the Pyshmin-Klyuchevskoy deposit, Middle Urals: mineral composition of ores and metasomatites, staged formation, and P–T conditions of formation, Litosfera, 2011, no. 6, pp. 103–122.Google Scholar
  51. 51.
    Murzin, V.V., Naumov, E.A., Azovskova, O.B., et al., The Vorontsovskoe Au–Hg–As ore deposit (Northern Urals, Russia): geological setting, ore mineralogy, geochemistry, geochronology and genetic model, Ore Geol. Rev., 2017, vol. 85, pp. 271–298.CrossRefGoogle Scholar
  52. 52.
    Petke, T. and Diamond, L.W., Rb–Sr dating of sphalerite based on fluid inclusion–host mineral isochrons: a clarification of why it works, Econ. Geol., 1996, vol. 91, pp. 951–956.CrossRefGoogle Scholar
  53. 53.
    Plotinskaya, O.Y., Grabezhev, A.I., Tessalina, S., et al., Porphyry deposits of the Urals: geological framework and metallogeny, Ore Geol. Rev., 2016, vol. 85, pp. 153–173.CrossRefGoogle Scholar
  54. 54.
    Reich, M., Ewing, R., Ehlers, T., et al., Low-temperature anisotropic diffusion of helium in zircon: implications for zircon (U–Th)/He thermochronometry, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 3119–3130.CrossRefGoogle Scholar
  55. 55.
    Reiners, P.W. and Brandon, M.T., Using thermochronology to understand orogenic erosion, Annu. Rev. Earth Planet. Sci., 2006, vol. 34, pp. 419–466.CrossRefGoogle Scholar
  56. 56.
    Saadoune, I., Purton, J., and Leeuw, N., He incorporation and diffusion pathways in pure and defective zircon ZrSiO4: a density functional theory study, Chem. Geol., 2009, vol. 258, pp. 182–196.CrossRefGoogle Scholar
  57. 57.
    Sazonov, V.N., Ogorodnikov, V.N., Koroteev, V.A., and Polenov, Yu.A., Mestorozhdeniya zolota Urala (Gold Deposits of the Urals), Yekaterinburg: IGGGA, 1999.Google Scholar
  58. 58.
    Schmitt, A.K., Danišík, M., Evans, N.J., et al., Acigol rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates, Contrib. Mineral. Petrol., 2011, vol. 162, no. 6, pp. 1215–1231.CrossRefGoogle Scholar
  59. 59.
    Selby, D., Kelley, K.D., Hitzman, M.W., et al., Re–Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonate-hosted copper deposits at Ruby Creek, Southern Brooks Range, Alaska, Econ. Geol., 2009, vol. 104, no. 3, pp. 437–444.CrossRefGoogle Scholar
  60. 60.
    Seravkin, I.B., Correlation between compositions of ore and host rocks in volcanogenic massive sulfide deposits of the Southern Urals, Geol. Ore Deposits, 2013, vol. 55, no. 3, pp. 207–223.CrossRefGoogle Scholar
  61. 61.
    Serov, P.A. and Ekimova, N.A., Possibilities of Sm–Nd dating of ore processes using sulfides, Vestn. Murm. Gos. Tekhn. Univ., 2009, vol. 12, no. 3, pp. 456–460.Google Scholar
  62. 62.
    Shukolyukov, Yu.A., Fugzan, M.M., Paderin, I.P., et al., Geothermochronology based on noble gases: I. Stability of the U–Xe isotopic system in nonmetamict zircons, Petrology, 2009, vol. 17, pp. 3–27.CrossRefGoogle Scholar
  63. 63.
    Shukolyukov, Yu.A., Yakubovich, O.V., Mochalov, A.G., et al., New geochronometer for the direct isotopic dating of native platinum minerals (190Pt–4He method), Petrology, 2012a, vol. 20, no. 6, pp. 491–505.CrossRefGoogle Scholar
  64. 64.
    Shukolyukov, Yu.A., Yakubovich, O.V., Yakovleva, S.Z., et al., Geothermochronology based on noble gases: III. migration of radiogenic He in the crystal structure of native metals with applications to their isotopic dating, Petrology, 2012b, vol. 20, no. 1, pp. 1–21.CrossRefGoogle Scholar
  65. 65.
    Shuster, D.L. and Farley, K.A., Diffusion kinetics of proton-induced 21Ne, 3He, and 4He in quartz, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 9, pp. 2349–2359.CrossRefGoogle Scholar
  66. 66.
    Shuster, D.L. and Farley, K.A. The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 183–196.CrossRefGoogle Scholar
  67. 67.
    Shuster, D., Flowers, R., and Farley, K., The influence of natural radiation damage on helium diffusion kinetics in apatite, Earth Planet. Sci. Lett., 2006, vol. 249, pp. 148–161.CrossRefGoogle Scholar
  68. 68.
    Smith, P.E., Evensen, N.M., York, D., et al., Single-crystal 40Ar–39Ar dating of pyrite: no fool’s clock, Geology, 2001, vol. 29, no. 5, pp. 403–406.CrossRefGoogle Scholar
  69. 69.
    Stein, H.J., Sundblad, K., Markey, R.J., et al., Re–Os ages for Archean molybdenite and pyrite, Kuittila–Kivisuo, Finland and Proterozoic molybdenite, Kabeliai, Lithuania: testing the chronometer in a metamorphic and metasomatic setting, Mineral. Deposita, 1998, vol. 33, no. 4, pp. 329–345.CrossRefGoogle Scholar
  70. 70.
    Stuart, F.M., Turner, G., Duckworth, R.C., et al., Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfides, Geology, 1994, vol. 22, no. 9, pp. 823–826.CrossRefGoogle Scholar
  71. 71.
    Svetukhin, V.V., Suslov, D.N., and Risovanyy, V.D., Model of inert gas desorption from irradiated reactor materials. 2005. http://www.niir.ruGoogle Scholar
  72. 72.
    Telford, W.M., Geldart, L.P., and Sheriff, R.E., Electrical properties of rocks and minerals, in Applied Geophysics, Cambridge: Cambridge University Press, 1990, pp. 283–292.CrossRefGoogle Scholar
  73. 73.
    Trocellier, P., Agarwal, S., and Miro, S., A review on helium mobility in inorganic materials, J. Nucl. Mater., 2014, vol. 445, pp. 128–142.CrossRefGoogle Scholar
  74. 74.
    Vaughan, D.J. and Corkhill, C.L., Mineralogy of sulfides, Elements, 2017, vol. 13, no. 2, pp. 81–87.CrossRefGoogle Scholar
  75. 75.
    Vikent’ev, I.V., Usloviya formirovaniya i metamorfizm kolchedannykh rud (Conditions of Formation and Metamorphism of Sulfide Ores), Moscow: Nauchnyi mir, 2004.Google Scholar
  76. 76.
    Vikentyev, I.V., Belogub, E.V., Novoselov, K.A., et al., Metamorphism of volcanogenic massive sulphide deposits in the Urals, Ore Geol. Rev., 2017, vol. 85, pp. 30–63.CrossRefGoogle Scholar
  77. 77.
    Yakubovich, O.V., Shukolyukov, Yu.A., Kotov, A.B., et al., Geothermochronology based on noble gases: II. Stability of the (U–Th)/He isotope system in zircon, Petrology, 2010, vol. 18, no. 6, pp. 555–570.CrossRefGoogle Scholar
  78. 78.
    Yakubovich, O.V., Mochalov, A.G., and Sluzhenikin, S.F., Sperrylite (PtAs2) as a 190Pt–4He geochronometer, Dokl. Earth Sci., 2015, vol. 462, no. 1, pp. 472–474.CrossRefGoogle Scholar
  79. 79.
    Yarosh, P.Ya., Diagenez i metamorfizm kolchedannykh rud na Urale (Diagenesis and Metamorphism of Sulfide Ores at the Urals), Moscow: Nauka, 1973.Google Scholar
  80. 80.
    Zeng, Z., Niedermann, S., Chen, S., et al., Noble gases in sulfide deposits of modern deep-sea hydrothermal systems: implications for heat fluxes and hydrothermal fluid processes, Chem. Geol., 2015, vol. 409, pp. 1–11.CrossRefGoogle Scholar
  81. 81.
    Zhu, L., Liu, Y., Ma, T., et al., In situ measurement of Os isotopic ratios in sulfides calibrated against ultra-fine particle standards using LA–MC–ICP–MS, J. Analyt. Atom. Spectrom., 2016, vol. 31, no. 7, pp. 1414–1422.CrossRefGoogle Scholar
  82. 82.
    Ziegler, J.F., Helium: Stopping Powers and Ranges in All Elemental Matter, New York: Pergamon, 1977, vol. 4.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Yakubovich
    • 1
    • 2
    Email author
  • A. M. Gedz
    • 1
    • 2
  • I. V. Vikentyev
    • 3
  • A. B. Kotov
    • 1
  • B. M. Gorokhovskii
    • 1
  1. 1.Institute of Precambrian Geology and Geochronology, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Earth Sciences, St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations