Advertisement

Petrology

, Volume 26, Issue 5, pp 492–514 | Cite as

Ultramafic–Mafic Assemblage of Plutonic Rocks and Hornblende Schists of Shirshov Rise, Bering Sea, and Stalemate Ridge, Northwest Pacific: Geodynamic Interpretations of Geochemical Data

  • S. A. Silantyev
  • I. V. Kubrakova
  • M. V. Portnyagin
  • O. A. Tyutyunnik
  • A. V. Zhilkina
  • A. S. Gryaznova
  • K. Hoernle
  • R. Werner
Article
  • 25 Downloads

Abstract

The paper presents data on plutonic and metamorphic rocks dredged during Cruise 249 of the German R/V Sonne to the Stalemate Ridge, Northwest Pacific Ocean and the Shirshov Rise, western Bering Sea. Dredges in the northwestern sector of the Stalemate Ridge and central portion of the Shirshov Rise show that the plutonic and metamorphic rocks obtained here are amazingly similar. Our petrologic and geochemical data led us to view the rocks as members of a mafic–ultramafic assemblage typical of cumulate portions of ophiolite complexes and backarc spreading centers. The plutonic complexes of the Shirshov Rise and Stalemate Ridge show similarities not only in the petrography and mineralogy of their protoliths but also in the character of their metamorphic transformations. Plutonic rocks from both areas display mineralogical evidence of metamorphism within a broad temperature range: from the high-temperature amphibolite facies to the greenschist facies. Relations between the index mineral assemblages indicate that the metamorphic history of plutonic complexes in the Stalemate Ridge and Shirshov Rise proceeded along a retrograde path. Hornblende schists accompanying the plutonic rocks of the Stalemate Ridge and Shirshov Rise are petrographically close to foliated amphibolites in subophiolitic metamorphic aureoles. Within the framework of geodynamic interpretations of our results, it is realistic to suggest that the examined plutonic complexes were exhumed from subduction zones of various age.

Keywords

peridotite gabbro ophiolite complexes subophiolite metamorphic aureoles back-arc spreading centers fore-arc basins subduction zones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, C.R., The Petrology of a Portion of the Troodos Plutonic Complex, Cyprus, Ph.D. Thesis, Cambridge: University, 1975.Google Scholar
  2. Baranov, B.V., Seliverstov, N.I., Murav’ev, A.V., and Muzurov, E.L., The Komandorsky basin as a product of spreading behind a transform plate boundary, Tectonophysics, 1991, vol. 199, pp. 237–269.CrossRefGoogle Scholar
  3. Bazylev, B.A., Magakyan, R., Silantyev, S.A., et al., Petrology of hyperbasites of Mamonia complex, southwestern Cyprus, Petrologiya, 1993, vol. 1, no. 4, pp. 348–378.Google Scholar
  4. Becker, H., Horan, M.F., Walker, R.J., et al., Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 4528–4550.CrossRefGoogle Scholar
  5. Bonatti, E., Lawrence, J.R., Hamlyn, P.R., and Breger, D., Aragonite from deep-sea ultramafic rocks, Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 1207–1214.CrossRefGoogle Scholar
  6. Brenan, J.M. and McDonough, W.F., Fractionation of highly siderophile elements (HSEs) by sulfide-silicate partitioning: a new spin, Am. Geophys. Union, Fall Meet., San Francisco, 2005, abstract 2005. AGUFM.V41D1502B.Google Scholar
  7. Casey, J.F. and Dewey, J.F., Initiation of subduction zones along transform and accreting plate boundaries, triplejunction evolution, and forearc spreading centers- implications for ophiolitic geology and obduction, in Ophiolites and Oceanic Lithosphere, Gass, I.G., Lippard, S.J., Shelton, A.W., Geol. Soc. London, Sp. Publ., 1984, vol. 13.Google Scholar
  8. Chum, C.Y., Cumulate pyroxenite and pyroxenite dykes in the Troodos ophiolite, Cyprus, Thesis of the Requirements for the Degree of Master of Philosophy at the University of Hong Kong, 2014.CrossRefGoogle Scholar
  9. Clenet, H., Ceuleneer, G., Pinet, P., et al., Thick sections of layered ultramafic cumulates in the Oman ophiolite revealed by an airborne hyperspectral survey: petrogenesis and relationship to mantle diapirism, Lithos, 2010, vol. 114, pp. 265–281.CrossRefGoogle Scholar
  10. Dantas, C., Ceuleneer, G., Gregoire, M., et al., Pyroxenites from the southwest Indian Ridge, 9o–16oE: cumulates from incremental melt fractions produced at the top of a cold melting regime, J. Petrol., 2007, vol. 48, no. 4, pp. 647–660.CrossRefGoogle Scholar
  11. Dewey, J.F. and Casey, J.F., The origin of obducted largeslab ophiolite complexes, in Arc-Continent Collision, Brown, D. and Ryan, P.D., Front. Earth Sci., Berlin-Heidelberg: Springer-Verlag, 2011, pp. 431–444.Google Scholar
  12. Dogan Paktunc, A., Metamorphism of the ultramafic rocks of the Thompson Mine, Thompson Nickel Belt, Northern Manitoba, Can. Mineral., 1984, vol. 22, pp. 77–91.Google Scholar
  13. Evans, B.W., Johannes, W., Oterdoom, Y., et al., Stability of chrysotile and antigorite in the serpentine multisystem, Schweiz. Mineral. Petrograf. Mitt., 1976, vol. 56, pp. 79–93.Google Scholar
  14. Fru-Green, G.L., Connolly, J.A.D., Plas, A., et al., Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity, The Subseafloor Biosphere at Mid-Ocean Ridges. Geophys. Monogr. Ser., Washington: AGU, 2004, vol. 144, pp. 119–136.CrossRefGoogle Scholar
  15. Fyfe, W.S., On the relative stabilities of talc, anthophyllite and enstatite, Am. J. Sci., 1962, vol. 260, pp. 460–466.CrossRefGoogle Scholar
  16. Garrido, C.J. Godard, M., et al., Migration and accumulation of ultra-depleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia), Chem. Geol., 2009, vol. 266, pp. 180–195.Google Scholar
  17. Garuti, G., Fershtater, G., Bea, F., et al., Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Ural preliminary results, Tectonophysics, 1997, vol. 276, pp. 181–194.CrossRefGoogle Scholar
  18. Greenwood, H.J., The synthesis and stability of anthophyllite, J. Petrol., 1963, vol. 4, no. 3, pp. 317–351.CrossRefGoogle Scholar
  19. Hammarstrom, J.M. and Zen, E., Aluminum in hornblende: an empirical igneous geobarometer, Am. Mineral., 1986, vol. 7l, pp. 1297–1313.Google Scholar
  20. Harvey, J., et al., Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic ocean ridge (ODP hole 1274a): influence of hydrothermal and magmatic processes, Contrib. Mineral. Petrol., 2013, vol. 166, pp. 1521–1538.Google Scholar
  21. Hellebrand, E., Snow, J.E., and Muehe, R., Mantle melting beneath Gakkel Ridge (Arctic Ocean): abyssal peridotites spinel compositions, Chem. Geol., 2002, vol. 182, pp. 227–235.CrossRefGoogle Scholar
  22. Himmelberg, G.R. and Loney, R.A., Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska, U.S. Geol. Surv. Prof. Pap., 1995, no. 1564, pp. 1–47.Google Scholar
  23. Holland, T. and Blundy, J., Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry, Contrib. Mineral. Petrol., 1994, vol. 116, pp. 433–447.CrossRefGoogle Scholar
  24. Jagoutz, E., Palme, H., Baddenhausen, H., et al., The abundances of major, and trace elements in the earth’s mantle as derived from primitive ultramafic nodules, The Tenth Lunar and Planet Sciences Conference. Abstracts of Papers, 1997, pp. 610–612.Google Scholar
  25. Jenkins, D.M., Stability and composition relations of calcic amphiboles in ultramafic rocks, Contrib. Mineral. Petrol., 1983, vol. 83, nos. 3–4, pp. 375–384.CrossRefGoogle Scholar
  26. Johnson, K.T.M., Dick, H.J.B., and Shimizu, N., Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotes, J. Geophys. Res., 1990, vol. 95, pp. 2661–2678.CrossRefGoogle Scholar
  27. Komor, S.C., Elthon, D., and Casey, J.F., Mineralogic variation in a layered ultramafic cumulate sequence at the North Arm Mountain Massif, Bay of Islands ophiolite, Newfoundland, J. Geophys. Res., 1985, vol. 90, no. B9, pp. 7705–7736.Google Scholar
  28. Krasnova, E.A., Portnyagin, M.V., Silantyev, S.A., et al., Two-stage evolution of mantle peridotites from the Stalemate Fracture Zone, Northwestern Pacific, Geochem. Int., 2013, vol. 51, no. 9, pp. 683–695.CrossRefGoogle Scholar
  29. Krause, J., Brugmann, G.E., and Pushkarev, E.V., Chemical composition of spinel from uralian-alaskan-type maficultramafic complexes and its petrogenetic significance, Contrib. Mineral. Petrol., 2010, vol. 161, no. 2, pp. 255–273.CrossRefGoogle Scholar
  30. Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., Nomenclature of amphiboles. report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names, Eur. J. Mineral., 1997, vol. 9, pp. 623–651.CrossRefGoogle Scholar
  31. Liu, C.-Z., Snow, J.E., Brugmann, G., et al., Non-chondritic HSE budget in Earth’s upper mantle evidenced by abyssal peridotites from Gakkel Ridge (Arctic Ocean), Earth Planet. Sci. Lett., 2009, vol. 283, pp. 122–132.CrossRefGoogle Scholar
  32. Lonsdale, P., Paleogene history of the Kula Plate: offshore evidence and onshore implications, Geol. Soc. Am. Bull., 1988, vol. 100, pp. 733–754.CrossRefGoogle Scholar
  33. Malvoisin, B., Mass transfer in the oceanic lithosphere: serpentinization is not isochemical, Earth Planet. Sci. Lett., 2015, vol. 430, pp. 75–85.CrossRefGoogle Scholar
  34. McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.CrossRefGoogle Scholar
  35. Miyashiro, A., Shido, F., and Kanehira, K., Metasomatic chloritization of gabbros in the Mid-Atlantic Ridge near 30°N, Mar. Geol., 1979, vol. 31, nos. 1–2, pp. 47–52.CrossRefGoogle Scholar
  36. Muller, W.F., Schmadicke, E., Okrusch, M., and Schussler, U., Intergrowths between anthophyllite, gedrite, calcic amphibole, cummingtonite, talc and chlorite in a metamorphosed ultramafic rock of the KTB pilot hole, Bavaria, Eur. J. Mineral., 2003, vol. 15, pp. 295–307.CrossRefGoogle Scholar
  37. Myhill, R., Constraints on the evolution of the mesohellenic ophiolite from subophiolitic metamorphic rocks, in Melanges: Processes of Formation and Societal Significance, Wakahnyashi, J. and Dyleck, Y., Ed., Geol. Soc. Am., 2011, vol. 480, pp. 75–94.Google Scholar
  38. Ohara, Y., Stern, R.J., Ishii, T., et al., Peridotites from the Mariana trough: first look at the mantle beneath an active back-arc basin, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 1–18.CrossRefGoogle Scholar
  39. Pallister, J.S. and Hopson, C.A., Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber, J. Geophys. Res., 1981, vol. 86, no. B4, pp. 2593–2644.Google Scholar
  40. Pallister, J.S. and Knight, R.J., Rare-earth element geochemistry of the Samail ophiolite near Ibra, Oman, J. Geophys. Res., 1981, vol. 86, no. B4, pp. 2673–2697.Google Scholar
  41. Papunen, H., Geology and Ultramafic Rocks of the Paleoproterozoic Pulju Greenstone Belt, Western Lapland. Integrated Technologies for Mineral Exploration Pilot Project for Nickel Ore Deposits. Technical Report, Turku University, 1998.Google Scholar
  42. Plyusnina, L.P., Eksperimental’noe issledovanie metamorfizma bazitov (Experimental Study of Metamorphism of Basites), Moscow: Nauka, 1983.Google Scholar
  43. Righter, K., Campbell, A.J., Humayun, M., and Hervig, R.L., Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Crbearing spinel, olivine, pyroxene and silicate melt, Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 867–880.Google Scholar
  44. Salters, V.J.M. and Stracke, A., Composition of the depleted mantle, Geochem. Geophys. Geosyst., 2004, vol. 5, Q05004, doi 10.1029/2003GC00059.Google Scholar
  45. Schmidt, M.W., Experimental calibration of the Al-inhornblende geobarometer at 650oC, 3.5–13.0 kbar, Terra Abstracts, 1991, vol. 3, no. 1, p. 30.Google Scholar
  46. Schmidt, G. and Snow, J.E., Platinum group elements (PGE) in abyssal peridotites from the oceanic upper mantle, Seventh Annual V.M. Goldschmidt Conference, 1997, 2021.pdf. http://www.lpi.usra.edu/meetings/gold/pdf/2021. pdfGoogle Scholar
  47. Scholl, D., Viewing the tectonic evolution of the Kamchatka–Aleutian (KAT) connection with an Alaska crustal extrusive perspective, in Volcanism and Subduction: the Kamchatka Region, Eichelberger, j., Gordeev, E., Kasahara, M., Eds., Washington: AGU, 2007, vol. 172, pp. 3–35.Google Scholar
  48. Scotford, D.M. and Williams, J.R., Petrology and geochemistry of metamorphosed ultramafic bodies in a portion of the Blue Ridge of North Carolina and Virginia, Am. Mineral., 1983, vol. 68, pp. 78–94.Google Scholar
  49. Seyler, M., Lorand, J.-P., Dick, H.J.B., and Drouin, M., Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15°–20°N: ODP hole 1274a, Contrib. Mineral. Petrol., 2007, vol. 153, pp. 303–319.CrossRefGoogle Scholar
  50. Shiraki, K., Geochemical behavior of chromium, Resour. Geol., 1997, vol. 47, no. 6, pp. 319–330.Google Scholar
  51. Silantyev, S.A., Metamorphism in modern oceanic basins, Petrologiya, 1995, vol. 3, no. 1, pp. 24–36.Google Scholar
  52. Silantyev, S.A., Variations in the geochemical and isotopic characteristics of residual peridotites along the Mid-Atlantic Ridge as a function of the nature of the mantle magmatic sources, Petrology, 2003, vol. 11, no. 4, pp. 305–326.Google Scholar
  53. Silantyev, S.A., Baranov, B.V., and Kolesov, G.M., Geochemistry and petrology of amphibolites of the Shirshov Ridge, Bering Sea, Geokhimiya, 1985, no. 12, pp. 1694–1705.Google Scholar
  54. Silantyev, S.A., Mironenko, M.V., and Novoselov, A.A., Hydrothermal systems in peridotites of slow-spreading mid-oceanic ridges. Modeling phase transitions and material balance: downwelling limb of a hydrothermal circulation cell Petrology, 2009, vol. 17, no. 2, pp. 138–157.Google Scholar
  55. Silantyev, S.A., Novoselov, A.A., Krasnova, E.A., et al., Silicification of peridotites at the Stalemate Fracture Zone (Northwestern Pacific): reconstruction of the conditions of low-temperature weathering and tectonic interpretation, Petrology, 2012, vol. 20, no. 1, pp. 21–39.CrossRefGoogle Scholar
  56. Silantyev, S.A., Portnyagin M.V., Krasnova E.A., et al., Petrology and geochemistry of plutonic rocks in the northwest Pacific Ocean and their geodynamic interpretation, Geochem. Int., 2014, vol. 52, no. 3, pp. 179–196.CrossRefGoogle Scholar
  57. Silantyev, S.A., Kubrakova, I.V., and Tyutyunnik, O.A., Distribution of siderophile and chalcophile elements in serpentinites of the oceanic lithosphere as an insight into the magmatic and crustal evolution of mantle peridotites, Geochem. Int., 2016, vol. 54, no. 12, pp. 1019–1034.CrossRefGoogle Scholar
  58. Sukhov, A.N., Chekhovich, V.D., Lander, A.V., et al., Age of the Shirshov submarine ridge basement (Bering Sea) based on the results of investigation of zircons using the U–Pb SHRIMP Method, Dokl. Earth Sci., 2011, vol. 439, no. 1, pp. 926–932.CrossRefGoogle Scholar
  59. Thakurta, J., Ripley, E.M., and Li, C., Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska, Geochem. Geophys. Geosyst., 2008, vol. 9, no. 7, pp. 3562–3585.CrossRefGoogle Scholar
  60. Timina, T.Yu., Kovyazin, S.V., and Tomilenko, A.A., The composition of melt and fluid inclusions in spinel of peridotite xenoliths from Avacha Volcano (Kamchatka), Dokl. Earth Sci., 2012, vol. 442, no. 1, pp. 115–119.CrossRefGoogle Scholar
  61. Tsai, C.-H., Iizuka, Y., and Ernst, W.G., Diverse mineral compositions, textures, and metamorphic P-T conditions of the glaucophane-bearing rocks in the Tamayen melange, Yuli Belt, eastern Taiwan, J. Asian Earth Sci, 2013, vol. 63, pp. 218–233.CrossRefGoogle Scholar
  62. Tyutyunnik, O.A., Kubrakova, I.V., Silantyev, S.A., et al., Complex of methods for study of trace element composition of ocean-floor rocks, Tez. dokl. Tret’ego s"ezda analitikov Rossii (Proc. 3rd Conference of Analysts of Russia), Moscow: GEOKhI RAN, 2017, p. 323.Google Scholar
  63. Varfalvy, V., Hebert, R., Bedard, J., and Lafleche, M.R., Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain Massif, Bay of Islands ophiolite, Newfoundland: implications for the genesis of boninitic and related magmas, Can. Mineral., 1997, vol. 35, pp. 543–570.Google Scholar
  64. Warren, J.M., Global variations in abyssal peridotite compositions, Lithos, 2015, p. 1016.Google Scholar
  65. Wasson, J.T. and Kallemeyn, G.W., Compositions of chondrites, Phil. Trans. R.S. London A, 1988, vol. 325, pp. 535–544.CrossRefGoogle Scholar
  66. Zhou, M.-F., Robinson, P.T., Malpas, J., et al., REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet, J. Petrol., 2005, vol. 46, pp. 615–639.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Silantyev
    • 1
  • I. V. Kubrakova
    • 1
  • M. V. Portnyagin
    • 1
    • 2
  • O. A. Tyutyunnik
    • 1
  • A. V. Zhilkina
    • 1
  • A. S. Gryaznova
    • 1
  • K. Hoernle
    • 2
  • R. Werner
    • 2
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI)Russian Academy of SciencesMoscowRussia
  2. 2.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations