, Volume 26, Issue 3, pp 246–254 | Cite as

Specifics of the Neoarchean Plume–Lithospheric Processes in the Kola–Norwegian Province of the Fennoscandian Shield: II. Petrology and Geodynamic Nature of Komatiite–Tholeiite Association

  • A. B. Vrevskii


Numerical modeling of the generation and evolution of parental melts of the komatiite–tholeiite association of the Uraguba structure was carried out using previously obtained geochemical and isotope data. It was established that komatiite, komatiite and tholeiite basalts depleted in LREE and having εNd(Т = 2.79) = +2.9…+3.2 were generated by equilibrium partial melting (F > 15%) of a depleted source (garnet-bearing Ol0.63 + Opx0.22 + Cpx0.06 + Grt0.09 mantle peridotite) at 4–8 GPa, while the genesis of primary melts of LREE-enriched komatiites (LaN/SmN ~ 1.2–1.6) with εNd(Т = 2.79) = +2.5…+2.2 was related to the equilibrium partial melting (F > 20%) of an “enriched mantle peridotite” (EM–Ol0.60 + Opx0.20 + Cpx0.08 + Grt0.12) at pressure of 2.5–4 GPa. Coexistence in space and time of two types of melting products of mantle peridotites formed at different depths is explained by melting of different parts of adiabatically ascending mantle plume.


Uraguba structure Fennoscandian shield Neoarchean komatiite Nd isotope composition genesis partial melting mantle plume 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, D., Plumes and hotspots as source of greenstone belts, Lithos, 1996, vol. 37, nos. 2/3, pp. 113–127.CrossRefGoogle Scholar
  2. Agee, C.B., Crystal–liquid density inversions in terrestrial and lunar magmas, Phys. Earth Planet. Inter., 1998, vol. 107, pp. 63–74.CrossRefGoogle Scholar
  3. Agee, C.B. and Walker, D., Olivine flotation in mantle melt, Earth Planet. Sci. Lett., 1993, vol. 114, pp. 315–324.CrossRefGoogle Scholar
  4. Arndt, N.T., Komatiites: a dirty window to Archean mantel, Terra Cognita, 1986, vol. 6, pp. 59–66.Google Scholar
  5. Arndt, N.T., Archean Komatiites, in Archean Crust Evolution, Condie, K.C., Ed., Amsterdam: Elsevier, 1994.Google Scholar
  6. Arndt, N.T., Albarede, F., and Nisbet, E.G., Mafic and ultramafic magmatism, in Greenstone Belts, De Wit, M.J. and Ashwal, L.D., Eds., Oxford: Claredon Press, 1997.Google Scholar
  7. Bayanova, T., Ludden, J., and Mitrofanov, F., Timing and duration of Paleoproterozoic events producing ore-bearing layered intrusions of the Baltic Shield: metallogenic, petrological and geodynamic implications, Geol. Soc. London: Spec. Publ., 2009, vol. 323, pp. 165–198.CrossRefGoogle Scholar
  8. Bickle, M.J., Martin, A., and Nisbet, E.G., Basaltic and peridotitic komatiites and stromatolites above a basal unconformity in the Belingwe greenstone belt, Rhodesia, Earth Planet. Sci. Lett., 1975, vol. 27, pp. 155–162.CrossRefGoogle Scholar
  9. Borg, L.E. and Draper, D.S., A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites, Meteoritics Planet. Sci., 2003, vol. 38, pp. 1713–1731.CrossRefGoogle Scholar
  10. Carl, B.A. and Walker, D., Olivine flotation in mantle melt, Earth Planet. Sci. Lett., 1993, vol. 114, pp. 315–324.CrossRefGoogle Scholar
  11. Cas, R.A.F., Marksa, K., Perazzoa, S., et al., Yilgarn craton, western Australia, emplaced as extrusive lavas or intrusive bodies?the significance of breccia textures and contact relationships, Precambrian Res., 2013, vol. 229, pp. 133–149.CrossRefGoogle Scholar
  12. Condie, K.C., Changing tectonic settings through time: indiscriminate use of geochemical discriminant diagrams, Precambrian Res., 2015, vol. 266, pp. 587–591.CrossRefGoogle Scholar
  13. Condie, K.C., Aster, C.R., and Van Hunen, J., A great thermal divergence in the mantle beginning 2.5 Ga: geochemical constraints from greenstone basalts and komatiites, Geosci. Front., 2016, vol. 7, pp. 543–553.CrossRefGoogle Scholar
  14. DePaolo, D.J., Trace-element and isotopic effects of combined wallrock assimilation and fractional crystallisation, Earth Planet. Sci. Lett., 1981, vol. 53, pp. 189–202.CrossRefGoogle Scholar
  15. Durrheim, R.J. and Mooney, W.D., Evolution of the Precambrian lithosphere: seismological and geochemical constraints, J. Geophys. Res., 1994, vol. 99, no. B8, pp. 15359–15374.CrossRefGoogle Scholar
  16. Foucher, J.-P., Lepichon, X., and Sibuet, J.-C., The ocean-continent transition in uniform lithosphere stretching model: role of partial melting in the mantle, Phill. Trans. R. Soc. London, 1982, vol. 305, no. 1489, pp. 27–43.CrossRefGoogle Scholar
  17. Francis, D., Ludden, J., Johnstone, R., and Davis, W., Picrite evidence for more Fe in Archean mantle reservoirs, Earth Planet. Sci. Lett., 1999, vol. 167, pp. 197–213.CrossRefGoogle Scholar
  18. GERM Partition Coefficient (Kd) Database (}
  19. Girnis, A.V., Ryabchikov, I.D., Bogatikov, O.L., Genezis komatitov i komatiitovykh bazal’tov (Genesis of Komatiites and Komatiitic Basalts), Moscow: Nauka, 1987. 120 s.Google Scholar
  20. Green, D.H., Hicholls, J.A., Viljoen, M., and Viljoen, R., Experimental demonstration of the existence of peridotite liquids in earliest Archean magmatism, Geology, 1975, vol. 3, no. 1, pp. 11–14.CrossRefGoogle Scholar
  21. Green, D.H., Experimental petrology of peridotites, including effects of water and carbon on melting in the earth’s upper mantle, Phys. Chem. Mineral., 2015, vol. 42, pp. 95–122.CrossRefGoogle Scholar
  22. Hanski, E. and Smolkin, V.F., Iron- and LREE-enriched mantle source for Early Proterozoic intraplate magmatism as exemplified by the Pechenga ferropicrites, Kola Peninsula, Russia, Lithos, 1995, vol. 34, pp. 107–126.CrossRefGoogle Scholar
  23. Hanski, E., Huhma, H., Rastas, P., and Kamenetsky, V.S., The Palaeoproterozoic komatiite-picrite association of Finnish Lapland, J. Petrol., 2001, vol. 42, pp. 855–876.CrossRefGoogle Scholar
  24. Herzberg, C. and Gasparik, T., Garnet and pyroxenes in the mantle: a test of majorite fractionation hypothesis, J. Geophys. Res., 1991, vol. 96, pp. 16263–16274.CrossRefGoogle Scholar
  25. Herzberg, C., Generation of plume magmas through time: an experimental perspective, Chem. Geol, 1995, vol. 126, pp. 1–16.CrossRefGoogle Scholar
  26. Herzberg, C. and Gazel, E., Petrological evidence for secular cooling in mantle plumes, Nature, 2009, vol. 458, pp. 619–622.CrossRefGoogle Scholar
  27. Herzberg, C. and Rudnick, R., Formation of cratonic lithosphere: an integrated thermal and petrological model, Lithos, 2012, vol. 149, pp. 4–15.CrossRefGoogle Scholar
  28. Hirose, K. and Kushiro, I., Partial melting of dry peridotites at high pressures. determination of compositions of melts segregated from peridotite using aggregates of diamond, Earth Planet. Sci. Lett., 1993, vol. 114, no. 4, pp. 477–490.CrossRefGoogle Scholar
  29. Jahn, B.M., Wu, F., and Chen, B., Massive granitoid generation in Central Asia: Nd isotope evidence and implica tion for continental growth in Phanerozoic, Episodes, 2000, vol. 23, pp. 82–92.Google Scholar
  30. Keto, L.S. and Jacobsen, S.B., Nd and Sr isotopic variations of early Paleozoic oceans, Earth Planet. Sci. Lett., 1987, vol. 84, pp. 27–41.CrossRefGoogle Scholar
  31. Konnunaho, J.P., Komatiite-hosted Ni–Cu–PGE deposits in Finland: their characterization, PGE content, and petrogenesis, Geol. Surv. Finland, 2016.Google Scholar
  32. Konnunaho, J.P., Hanski, E.J., Bekker, A., et al., Archaean komatiite-hosted PGE bearing Ni–Cu sulfide deposit at Vaara, eastern Finland, Mineral. Deposita, 2013, vol. 48, pp. 967–989.CrossRefGoogle Scholar
  33. Konnunaho, J., Hanski, E., Wingc, B., et al., PGEenriched komatiite-hosted sulfide deposit in the Archean Suomussalmi greenstone belt, eastern Finland, Ore Geol. Rev., 2016, vol. 72, pp. 641–652.CrossRefGoogle Scholar
  34. Kushiro, I., Syono, Y., and Akimoto, S., Melting of peridotite nodule at high pressure and high water pressures, J. Geophys. Res., 1968, vol. 63, pp. 6023–6029.CrossRefGoogle Scholar
  35. Lobach-Zhuchenko, S.B., Chekulaev, V.P., Arestova, N.A., et al., Archean terranes in Karelia: geological and isotopic–geochemical evidence, Geotectonics, 2000, vol. 34, no. 6, pp. 452–466.Google Scholar
  36. Maier, W.D., Peltonen, P., Halkoaho, T., and Hanski, E., Geochemistry of komatiites from the Tipasjärvi, Kuhmo, Suomussalmi, Ilomantsi, and Tulppio greenstone belts, Finland: implications for tectonic setting and Ni sulphide prospectivity, Precambrian Res., 2013, vol. 228, pp. 63–84.CrossRefGoogle Scholar
  37. Matrenichev V.A. and Vrevskii A.B. Isotopic–geochemical model for the upper mantle evolution of the Baltic Shield, Geochem. Int., 2004, vol. 42, no. 1, pp. 86–91.Google Scholar
  38. McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol, 1995, vol. 120, pp. 223–253.CrossRefGoogle Scholar
  39. McKenzie, D.P. and Bickle, M.J., The volume and composition of melt generated by extension of lithosphere, J. Petrol., 1988, vol. 625–679.Google Scholar
  40. McKenzie, D. and O’Nions, R.K., Partial melt distributions from inversion of rare earth element concentrations, J. Petrol., 1991, vol. 32, no. 5, pp. 1021–1091.CrossRefGoogle Scholar
  41. Miller, G.H., Stolper, E.M., and Ahrens, I.J., The equation of state of melten komatiite, 2. Application to komatiite petrogenesis and the Haden mantle, J. Geophys. Res., 1991, vol. 96, pp. (11)849–(11)8464.CrossRefGoogle Scholar
  42. Myskova, T.A., Berezhnaya, N.G., Glebovitskii, V.A., et al., Findings of the oldest (3600 Ma) zircons in gneisses of the Kola Group, Central Kola Block, Baltic Shield: evidence from U–Pb (SHRIMP-II) Data, Dokl. Earth Sci., 2005, vol. 402, pp. 547–550.Google Scholar
  43. Myskova, T.A., Glebovitskii, V.A., Mil’kevich, R.I., et al., Refinement of composition and age of aluminous gneisses of the Late Archean Uraguba greenstone structure, Kola Peninsula, Zap. Ross. Mineral. O-va, 2010, no. 3, pp. 15–21.Google Scholar
  44. Nisbet, E.G., Bickle, M.J., and Martin, A., The mafic and ultramafic lavas of the Belingwe greenstone belt, Rhodesia, J. Petrol., 1977, vol. 18, no. 4, pp. 521–566.CrossRefGoogle Scholar
  45. Nisbet, E.G., Arndt, N.T., Bickle, M.J., et al., Uniquely fresh 2.7 Ga komatiites from the Belingwe greenstone belt, Zimbabwe, Geology, 1987, vol. 15, pp. 1147–1150.Google Scholar
  46. Nisbet, E.G., Cheadle, M.J., Arndt, H.T., et al., Constraining potential temperature of Archaean mantle: a review of the evidence from komatiites, Lithos, 1993, vol. 34, nos. 1/3, pp. 291–307.CrossRefGoogle Scholar
  47. Nykanen, V.M., Vuollo, J.I., Liipo, J.O., and Piirainen, T.A., Transitional (2.1 Ga) Fe-tholeiitic–tholeiitic magmatism in the Fennoscandian Shield signifying lithospheric thinning during Palaeoproterozoic extensional tectonics, Precambrian Res., 1994, vol. 70, pp. 45–65.CrossRefGoogle Scholar
  48. O’Hara, M.J., The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks, Earth Sci. Rev., 1969, vol. 4, pp. 69–133.CrossRefGoogle Scholar
  49. Peltonen, P. and Brügmann, G., Origin of layered continental mantle (Karelian Craton, Finland): geochemical and Re-Os isotope constraints, Lithos, 2006, vol. 89, pp. 405–423.CrossRefGoogle Scholar
  50. Puchtel, I.S., Blichert-Toft, J., Touboul, M., et al., Insights into early earth from Barberton komatiites: evidence from lithophile isotope and trace element systematics, Geochim. Cosmochim. Acta, 2013, vol. 108, pp. 63–90.CrossRefGoogle Scholar
  51. Renner, R., Nisbet, E.G., Cheadle, M.J., et al., Komatiite flows from the reliance formation, Belingwe Belt, Zimbabwe: I. Petrography and mineralogy, J. Petrol., 1994, vol. 35, pp. 361–400.CrossRefGoogle Scholar
  52. Richter, F.M., A major change in the thermal state of Earth at the Archaean–Proterozoic boundary: consequences for the nature and preservation of continental lithosphere, J. Petrol., 1988, vol. 1, pp. 39–52.CrossRefGoogle Scholar
  53. Robin-Popieul, C.C.M., Arndt, N.T., Chauvel, C., et al., New model for Barberton komatiites: deep critical melting with high melt retention, J. Petrol., 2012, vol. 53, no. 11, pp. 2191–2229.CrossRefGoogle Scholar
  54. Rudnick, R.L. and Gao, S., Composition of the continental crust, Treatise on Geochemistry, Holland, H.D. and Turekian, K.K., Eds., Amsterdam: Elsevier Ltd, 2003, vol. 3, pp. 1–64.Google Scholar
  55. Sakamaki, T., Ohtani, E., Urakawa, S., et al., Density of dry peridotite magma at high pressure by X-ray absorption method, Am. Mineral., 2010, vol. 95, pp. 144–147.CrossRefGoogle Scholar
  56. Sossi, P.A., Eggins, S.M., Nesbitt, R.W., et al., Petrogenesis and geochemistry of Archean komatiites, J. Petrol., 2016, vol. 57, pp. 147–184.CrossRefGoogle Scholar
  57. Stone, W.E., Crocket, J.H., Dickin, A.P., and Fleet, M.E., Origin of Archean ferropicrites: geochemical constraints from the Boston Creek flow, Abitibi greenstone belt, Ontario, Canada, Chem. Geol., 1995, vol. 121, pp. 51–71.CrossRefGoogle Scholar
  58. Suzuki, A., Ohtani, E., and Kato, T., Density and thermal expansion of a peridotite melt at high pressure, Phys. Earth Planet. Inter., 1998, vol. 107, pp. 53–61.CrossRefGoogle Scholar
  59. Takahashi, E., Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle, J. Geophys. Res., 1986, vol. 91, pp. 9367–9382.CrossRefGoogle Scholar
  60. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Evolution and Composition, London: Blackwell, 1985.Google Scholar
  61. Tessalina, S.G., Bourdon, B., Van Kranendonk, M., et al., Influence of Hadean crust evident in basalts and cherts from the Pilbara Craton, Nature Geosci., 2010, vol. 3, pp. 214–217.CrossRefGoogle Scholar
  62. Tronnes, R.G., Caanil, D., and Wei, K., Element partitioning between silicate and coexisting melts at pressures of 1–27 GPa and implications for mantle evolution, Earth Planet. Sci. Lett., 1992, vol. 111, pp. 241–255.CrossRefGoogle Scholar
  63. Van Kranendonk, M.J., Smithies, R.Y., Hickman, A.H., et al., Paleoarchean development of a continental nucleus: the East Pilbara terrane of the Pilbara Craton, western Australia, Earth’s Oldest Rocks, 2007, pp. 307–337.CrossRefGoogle Scholar
  64. Vrevskii, A.B., Lobach-Zhuchenko, S.B., Chekulaev, V.P., et al., Geological, petrologic, isotopic, and geochemical constraints of geodynamic models simulating formation of the archean tonalite–trondhjemite–granodiorite associations in ancient cratons, Geotectonics, 2010, vol. 44, no. 4, pp. 305–320.CrossRefGoogle Scholar
  65. Vrevskii, A.B., Specifics of Neoarchean plume–lithospheric processes in the Kola–Norwegian Province of the Fennoscandian Shield: I. Composition and age of the komatiite–tholeiite association, Petrology, 2018, vol. 26, no. 2, pp. 121–144.CrossRefGoogle Scholar
  66. Vrevskii A.B., Matrenichev V.A., and Ruzh’eva, M.S., Petrology of komatiites from the Baltic Shield and isotope geochemical evolution of their mantle sources, Petrology, 2003, vol. 11, no. 6, pp. 532–561.Google Scholar
  67. Walter, M.J., Melting of garnet peridotite and the origin of komatiite and depleted lithosphere, J. Petrol., 1998, vol. 39, no. 1, pp. 29–60.CrossRefGoogle Scholar
  68. Wei, K., Tronnes, R.G., and Scarte, C.M., Phase relations of aluminum-undepleted and aluminum-depleted komatiites of pressures 4–12 GPa, J. Geophys. Res., 1990, vol. 95, pp. 15817–15827.CrossRefGoogle Scholar
  69. Yang, S-H., Hanski, E., Li, C., et al., Mantle source of the 2.44–2.50 Ga mantle plume-related magmatism in the Fennoscandian shield: evidence from Os, Nd, and Sr isotope compositions of the Monchepluton and Kemi intrusions, Mineral. Deposita, 2016, vol. 51, pp. 1055–1073.CrossRefGoogle Scholar
  70. Zhang, J. and Herzberg, C., Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa, J. Geophys. Res., 1994, vol. 99, no. B9, 17729–17742.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, Institute of Earth SciencesSt Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations